1887

Abstract

Since the discovery of haemolysis many studies focused on a deeper understanding of this phenotype in and its association with other virulence genes, diseases and pathogenic attributes/functions in the host. Our virulence-associated factor profiling and genome-wide association analysis of genomes of haemolytic and nonhaemolytic unveiled high prevalence of adhesins, iron acquisition genes and toxins in haemolytic bacteria. In the case of fimbriae with high prevalence, we analysed sequence variation of FimH, EcpD and CsgA, and showed that different adhesin variants were present in the analysed groups, indicating altered adhesive capabilities of haemolytic and nonhaemolytic . Analysis of over 1000 haemolytic genomes revealed that they are pathotypically, genetically and antigenically diverse, but their adhesin and iron acquisition repertoire is associated with genome placement of cluster. Haemolytic with chromosome-encoded alpha-haemolysin had high frequency of P, S, Auf fimbriae and multiple iron acquisition systems such as aerobactin, yersiniabactin, salmochelin, Fec, Sit, Bfd and hemin uptake systems. Haemolytic with plasmid-encoded alpha-haemolysin had similar adhesin profile to nonpathogenic with high prevalence of Stg, Yra, Ygi, Ycb, Ybg, Ycf, Sfm, F9 fimbriae, Paa, Lda, intimin and type 3 secretion system encoding genes. Analysis of HlyCABD sequence variation revealed presence of variants associated with genome placement and pathotype.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000743
2021-12-23
2022-01-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/12/mgen000743.html?itemId=/content/journal/mgen/10.1099/mgen.0.000743&mimeType=html&fmt=ahah

References

  1. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli . Nat Rev Microbiol 2004; 2:123–140 [View Article] [PubMed]
    [Google Scholar]
  2. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M et al. Recent advances in understanding enteric pathogenic Escherichia coli . Clin Microbiol Rev 2013; 26:822–880 [View Article] [PubMed]
    [Google Scholar]
  3. Aleksandrowicz A, Khan MM, Sidorczuk K, Noszka M, Kolenda R. Whatever makes them stick - Adhesins of avian pathogenic Escherichia coli . Vet Microbiol 2021; 257:109095 [View Article] [PubMed]
    [Google Scholar]
  4. Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 2010; 8:26–38 [View Article] [PubMed]
    [Google Scholar]
  5. Kolenda R, Burdukiewicz M, Schierack P. A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli. Front Cell Infect Microbiol 2015; 5:23. [View Article] [PubMed]
    [Google Scholar]
  6. Le Bouguénec C. Adhesins and invasins of pathogenic Escherichia coli . Int J Med Microbiol 2005; 295:471–478 [View Article] [PubMed]
    [Google Scholar]
  7. Larsonneur F, Martin FA, Mallet A, Martinez-Gil M, Semetey V et al. Functional analysis of Escherichia coli Yad fimbriae reveals their potential role in environmental persistence. Environ Microbiol 2016; 18:5228–5248 [View Article] [PubMed]
    [Google Scholar]
  8. Rödiger S, Kramer T, Frömmel U, Weinreich J, Roggenbuck D et al. Intestinal Escherichia coli colonization in a mallard duck population over four consecutive winter seasons. Environ Microbiol 2015; 17:3352–3361 [View Article] [PubMed]
    [Google Scholar]
  9. Schiebel J, Böhm A, Nitschke J, Burdukiewicz M, Weinreich J et al. Genotypic and phenotypic characteristics associated with biofilm formation by human clinical Escherichia coli isolates of different pathotypes. Appl Environ Microbiol 2017; 83:e01660-17. [View Article] [PubMed]
    [Google Scholar]
  10. Yao Y, Xie Y, Perace D, Zhong Y, Lu J et al. The type III secretion system is involved in the invasion and intracellular survival of Escherichia coli K1 in human brain microvascular endothelial cells. FEMS Microbiol Lett 2009; 300:18–24 [View Article] [PubMed]
    [Google Scholar]
  11. Zhou Y, Tao J, Yu H, Ni J, Zeng L et al. Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells. Infect Immun 2012; 80:1243–1251 [View Article] [PubMed]
    [Google Scholar]
  12. Garénaux A, Caza M, Dozois CM. The Ins and outs of siderophore mediated iron uptake by extra-intestinal pathogenic Escherichia coli . Vet Microbiol 2011; 153:89–98 [View Article] [PubMed]
    [Google Scholar]
  13. Andrews SC, Robinson AK, Rodríguez-Quiñones F. Bacterial iron homeostasis. FEMS Microbiol Rev 2003; 27:215–237 [View Article] [PubMed]
    [Google Scholar]
  14. Welch RA. Uropathogenic Escherichia coli-Associated exotoxins. Microbiol Spectr 2016; 4: [View Article] [PubMed]
    [Google Scholar]
  15. Lorenz SC, Son I, Maounounen-Laasri A, Lin A, Fischer M et al. Prevalence of hemolysin genes and comparison of ehxA subtype patterns in Shiga toxin-producing Escherichia coli (STEC) and non-STEC strains from clinical, food, and animal sources. Appl Environ Microbiol 2013; 79:6301–6311 [View Article] [PubMed]
    [Google Scholar]
  16. Oscarsson J, Westermark M, Beutin L, Uhlin BE. The bacteriophage-associated ehly1 and ehly2 determinants from Escherichia coli O26:H- strains do not encode enterohemolysins per se but cause release of the ClyA cytolysin. Int J Med Microbiol 2002; 291:625–631 [View Article] [PubMed]
    [Google Scholar]
  17. Morales C, Lee MD, Hofacre C, Maurer JJ. Detection of a novel virulence gene and a Salmonella virulence homologue among Escherichia coli isolated from broiler chickens. Foodborne Pathog Dis 2004; 1:160–165 [View Article] [PubMed]
    [Google Scholar]
  18. del Castillo FJ, Leal SC, Moreno F, del Castillo I. The Escherichia coli K-12 sheA gene encodes a 34-kDa secreted haemolysin. Mol Microbiol 1997; 25:107–115 [View Article] [PubMed]
    [Google Scholar]
  19. Schmidt H, Beutin L, Karch H. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect Immun 1995; 63:1055–1061 [View Article] [PubMed]
    [Google Scholar]
  20. Schwidder M, Heinisch L, Schmidt H. Genetics, toxicity, and distribution of enterohemorrhagic Escherichia coli hemolysin. Toxins (Basel) 2019; 11:E502. [View Article] [PubMed]
    [Google Scholar]
  21. Bielaszewska M, Aldick T, Bauwens A, Karch H. Hemolysin of enterohemorrhagic Escherichia coli: structure, transport, biological activity and putative role in virulence. Int J Med Microbiol 2014; 304:521–529 [View Article] [PubMed]
    [Google Scholar]
  22. Hunt S, Green J, Artymiuk PJ. Hemolysin E (HlyE, ClyA, SheA) and related toxins. Adv Exp Med Biol 2010; 677:116–126 [View Article] [PubMed]
    [Google Scholar]
  23. Burgos Y, Beutin L. Common origin of plasmid encoded alpha-hemolysin genes in Escherichia coli . BMC Microbiol 2010; 10:193. [View Article] [PubMed]
    [Google Scholar]
  24. Ristow LC, Welch RA. Hemolysin of uropathogenic Escherichia coli: A cloak or a dagger?. Biochim Biophys Acta 2016; 1858:538–545 [View Article]
    [Google Scholar]
  25. Schierack P, Weinreich J, Ewers C, Tachu B, Nicholson B et al. Hemolytic porcine intestinal Escherichia coli without virulence-associated genes typical of intestinal pathogenic E. coli . Appl Environ Microbiol 2011; 77:8451–8455 [View Article] [PubMed]
    [Google Scholar]
  26. Merlino J, Siarakas S, Robertson GJ, Funnell GR, Gottlieb T et al. Evaluation of CHROMagar Orientation for differentiation and presumptive identification of gram-negative bacilli and Enterococcus species. J Clin Microbiol 1996; 34:1788–1793 [View Article] [PubMed]
    [Google Scholar]
  27. Ewers C, Guenther S, Wieler LH, Schierack P. Mallard ducks - a waterfowl species with high risk of distributing Escherichia coli pathogenic for humans. Environ Microbiol Rep 2009; 1:510–517 [View Article] [PubMed]
    [Google Scholar]
  28. Guenther S, Filter M, Tedin K, Szabo I, Wieler LH et al. Enterobacteriaceae populations during experimental Salmonella infection in pigs. Vet Microbiol 2010; 142:352–360 [View Article] [PubMed]
    [Google Scholar]
  29. Schierack P, Römer A, Jores J, Kaspar H, Guenther S et al. Isolation and characterization of intestinal Escherichia coli clones from wild boars in Germany. Appl Environ Microbiol 2009; 75:695–702 [View Article] [PubMed]
    [Google Scholar]
  30. Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res 2018; 7:1338 [View Article] [PubMed]
    [Google Scholar]
  31. Page AJ, De Silva N, Hunt M, Quail MA, Parkhill J et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genom 2016; 2:e000083 [View Article] [PubMed]
    [Google Scholar]
  32. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinforma Oxf Engl 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  33. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinforma Oxf Engl 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  34. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinforma Oxf Engl 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  35. Ingle DJ, Valcanis M, Kuzevski A, Tauschek M, Inouye M et al. In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages. Microb Genom 2016; 2:e000064 [View Article] [PubMed]
    [Google Scholar]
  36. Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb Genom 2018; 4: [View Article] [PubMed]
    [Google Scholar]
  37. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res 2018; 3:93 [View Article] [PubMed]
    [Google Scholar]
  38. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  39. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017; 3:e000131 [View Article] [PubMed]
    [Google Scholar]
  40. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:D687–D692 [View Article] [PubMed]
    [Google Scholar]
  41. Frömmel U, Lehmann W, Rödiger S, Böhm A, Nitschke J et al. Adhesion of human and animal Escherichia coli strains in association with their virulence-associated genes and phylogenetic origins. Appl Environ Microbiol 2013; 79:5814–5829 [View Article] [PubMed]
    [Google Scholar]
  42. Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol 2016; 17:238. [View Article] [PubMed]
    [Google Scholar]
  43. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinforma Oxf Engl 2011; 27:2987–2993 [View Article] [PubMed]
    [Google Scholar]
  44. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res 2019; 47:5539–5549 [View Article] [PubMed]
    [Google Scholar]
  45. Jolley KA, Maiden MCJ. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article] [PubMed]
    [Google Scholar]
  46. Seemann T. mlst. GitHub. n.d https://github.com/tseemann/mlst
  47. Okonechnikov K, Golosova O, Fursov M. UGENE team Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 2012; 28:1166–1167 [View Article]
    [Google Scholar]
  48. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28:3150–3152 [View Article] [PubMed]
    [Google Scholar]
  49. Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 2021; 49:D344–D354 [View Article] [PubMed]
    [Google Scholar]
  50. Brunson JC. ggalluvial: layered grammar for alluvial plots. J Open Source Softw 2020; 5:2017 [View Article]
    [Google Scholar]
  51. R Core Team R: A language and environment for statistical computing. In R Foundation for Statistical Computing Vienna, Austria: 2021
    [Google Scholar]
  52. Wickham H. ggplot2: Elegant Graphics for Data Analysis, 2nd edn. Springer International Publishing; 2016
    [Google Scholar]
  53. Pearson K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. In Kotz S, Johnson NL. eds Breakthroughs in Statistics: Methodology and Distribution Springer Series in Statistics New York, NY: Springer; 1992 pp 11–28 [View Article]
    [Google Scholar]
  54. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  55. Murphy R, Palm M, Mustonen V, Warringer J, Farewell A et al. Genomic epidemiology and evolution of Escherichia coli in wild animals in Mexico. mSphere 2021; 6:e00738-20. [View Article] [PubMed]
    [Google Scholar]
  56. Osińska M, Nowakiewicz A, Zięba P, Gnat S, Łagowski D. Wildlife omnivores and herbivores as a significant vehicle of multidrug-resistant and pathogenic Escherichia coli strains in environment. Environ Microbiol Rep 2020; 12:712–717 [View Article] [PubMed]
    [Google Scholar]
  57. Schembri MA, Klemm P. Biofilm formation in a hydrodynamic environment by novel fimh variants and ramifications for virulence. Infect Immun 2001; 69:1322–1328 [View Article] [PubMed]
    [Google Scholar]
  58. Schierack P, Rödiger S, Kolenda R, Hiemann R, Berger E et al. Species-specific and pathotype-specific binding of bacteria to zymogen granule membrane glycoprotein 2 (GP2). Gut 2015; 64:517–519 [View Article]
    [Google Scholar]
  59. Sokurenko EV, Chesnokova V, Dykhuizen DE, Ofek I, Wu XR et al. Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc Natl Acad Sci U S A 1998; 95:8922–8926 [View Article] [PubMed]
    [Google Scholar]
  60. Saldaña Z, Xicohtencatl-Cortes J, Avelino F, Phillips AD, Kaper JB et al. Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli. Environ Microbiol 2009; 11:992–1006 [View Article] [PubMed]
    [Google Scholar]
  61. Ali A, Kolenda R, Khan MM, Weinreich J, Li G et al. Novel avian pathogenic Escherichia coli genes responsible for adhesion to chicken and human cell lines. Appl Environ Microbiol 2020; 86:e01068-20 [View Article] [PubMed]
    [Google Scholar]
  62. Saldaña Z, De la Cruz MA, Carrillo-Casas EM, Durán L, Zhang Y et al. Production of the Escherichia coli common pilus by uropathogenic E. coli is associated with adherence to HeLa and HTB-4 cells and invasion of mouse bladder urothelium. PLoS One 2014; 9:e101200 [View Article] [PubMed]
    [Google Scholar]
  63. Barroso-Batista J, Sousa A, Lourenço M, Bergman M-L, Sobral D et al. The first steps of adaptation of Escherichia coli to the gut are dominated by soft sweeps. PLoS Genet 2014; 10:e1004182. [View Article] [PubMed]
    [Google Scholar]
  64. Kisiela DI, Chattopadhyay S, Libby SJ, Karlinsey JE, Fang FC et al. Evolution of Salmonella enterica virulence via point mutations in the fimbrial adhesin. PLoS Pathog 2012; 8:e1002733. [View Article] [PubMed]
    [Google Scholar]
  65. Earle SG, Wu C-H, Charlesworth J, Stoesser N, Gordon NC et al. Identifying lineage effects when controlling for population structure improves power in bacterial association studies. Nat Microbiol 2016; 1:16041 [View Article] [PubMed]
    [Google Scholar]
  66. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 2017; 45:D200–D203 [View Article] [PubMed]
    [Google Scholar]
  67. Choi U, Lee C-R. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli . Front Microbiol 2019; 10:953. [View Article] [PubMed]
    [Google Scholar]
  68. Hejair HMA, Zhu Y, Ma J, Zhang Y, Pan Z et al. Functional role of ompF and ompC porins in pathogenesis of avian pathogenic Escherichia coli. Microb Pathog 2017; 107:29–37 [View Article] [PubMed]
    [Google Scholar]
  69. Patrick M, Gray MD, Sandkvist M, Johnson TL. Type II Secretion in Escherichia coli . EcoSal Plus 2010; 4: [View Article] [PubMed]
    [Google Scholar]
  70. Laestadius A, Richter-Dahlfors A, Aperia A. Dual effects of Escherichia coli alpha-hemolysin on rat renal proximal tubule cells. Kidney Int 2002; 62:2035–2042 [View Article] [PubMed]
    [Google Scholar]
  71. Nhu NTK, Phan M-D, Forde BM, Murthy AMV, Peters KM et al. Complex multilevel control of hemolysin production by uropathogenic Escherichia coli . mBio 2019; 10:e02248-19. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000743
Loading
/content/journal/mgen/10.1099/mgen.0.000743
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error