1887

Abstract

Lactate accumulation in the human gut is linked to a range of deleterious health impacts. However, lactate is consumed and converted to the beneficial short-chain fatty acids butyrate and propionate by indigenous lactate-utilizing bacteria. To better understand the underlying genetic basis for lactate utilization, transcriptomic analyses were performed for two prominent lactate-utilizing species from the human gut, and , during growth on lactate, hexose sugar or hexose plus lactate. In L2-7 six genes of the lactate utilization () cluster, including NAD-independent -lactate dehydrogenase (-iLDH), were co-ordinately upregulated during growth on equimolar - and -lactate (-lactate). Upregulated genes included an acyl-CoA dehydrogenase related to butyryl-CoA dehydrogenase, which may play a role in transferring reducing equivalents between reduction of crotonyl-CoA and oxidation of lactate. Genes upregulated in GD/7 included a six-gene cluster () encoding propionyl CoA-transferase, a putative lactoyl-CoA epimerase, lactoyl-CoA dehydratase and lactate permease, and two unlinked acyl-CoA dehydrogenase genes that are candidates for acryloyl-CoA reductase. A -iLDH homologue in is encoded by a separate, partial gene cluster, but not upregulated on lactate. While converts three mols of -lactate via the acrylate pathway to two mols propionate and one mol acetate, some of the acetate can be re-used with additional lactate to produce butyrate. A key regulatory difference is that while glucose partially repressed cluster expression in , there was no repression of lactate-utilization genes by fructose in the non-glucose utilizer . This suggests that these species could occupy different ecological niches for lactate utilization in the gut, which may be important factors to consider when developing lactate-utilizing bacteria as novel candidate probiotics.

Funding
This study was supported by the:
  • Rural and Environment Science and Analytical Services Division
    • Principle Award Recipient: NotApplicable
  • Chr. Hansen
    • Principle Award Recipient: AlanW. Walker
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000739
2022-01-25
2022-07-06
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/1/mgen000739.html?itemId=/content/journal/mgen/10.1099/mgen.0.000739&mimeType=html&fmt=ahah

References

  1. Sheridan PO, Louis P, Tsompanidou E, Shaw S, Harmsen HJ et al. Figshare 2022 [View Article]
    [Google Scholar]
  2. Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 2012; 9:577–589 [View Article]
    [Google Scholar]
  3. Gottschalk G. Bacterial Metabolism Verlag: New York, Heidelberg, Berlin: Springer; 1979
    [Google Scholar]
  4. Duncan SH, Louis P, Thomson JM, Flint HJ. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 2009; 11:2112–2122 [View Article] [PubMed]
    [Google Scholar]
  5. McWilliam Leitch EC, Stewart CS. Susceptibility of Escherichia coli O157 and non-O157 isolates to lactate. Lett Appl Microbiol 2002; 35:176–180 [View Article] [PubMed]
    [Google Scholar]
  6. Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018; 562:583–588 [View Article] [PubMed]
    [Google Scholar]
  7. Slyter LL. Influence of acidosis on rumen function. J Anim Sci 1976; 43:910–929 [View Article] [PubMed]
    [Google Scholar]
  8. Russell JR, Hino T. Regulation of lactate production in Streptococcus bovis: A spiraling effect that contributes to rumen acidosis. J Dairy Sci 1985; 68:1712–1721 [View Article] [PubMed]
    [Google Scholar]
  9. Kaneko T, Bando Y, Kurihara H, Satomi K, Nonoyama K et al. Fecal microflora in a patient with short-bowel syndrome and identification of dominant lactobacilli. J Clin Microbiol 1997; 35:3181–3185 [View Article] [PubMed]
    [Google Scholar]
  10. Vernia P, Caprilli R, Latella G, Barbetti F, Magliocca FM et al. Fecal lactate and ulcerative colitis. Gastroenterology 1988; 95:1564–1568 [View Article] [PubMed]
    [Google Scholar]
  11. Gillis CC, Hughes ER, Spiga L, Winter MG, Zhu W et al. Dysbiosis-associated change in host metabolism generates lactate to support salmonella growth. Cell Host & Microbe 2018; 23:54–64 [View Article]
    [Google Scholar]
  12. Thomas MT, Shepherd M, Poole RK, van Vliet AHM, Kelly DJ et al. Two respiratory enzyme systems in Campylobacter jejuni NCTC 11168 contribute to growth on L-lactate. Environ Microbiol 2011; 13:48–61 [View Article] [PubMed]
    [Google Scholar]
  13. Counotte GH, Lankhorst A, Prins RA. Role of DL-lactic acid as an intermediate in rumen metabolism of dairy cows. J Anim Sci 1983; 56:1222–1235 [View Article] [PubMed]
    [Google Scholar]
  14. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P et al. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 2006; 72:3593–3599 [View Article] [PubMed]
    [Google Scholar]
  15. Shabat SKB, Sasson G, Doron-Faigenboim A, Durman T, Yaacoby S et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J 2016; 10:2958–2972 [View Article] [PubMed]
    [Google Scholar]
  16. Wang SP, Rubio LA, Duncan SH, Donachie GE, Holtrop G et al. Pivotal Roles for pH, lactate, and lactate-utilizing bacteria in the stability of a human colonic microbial ecosystem. mSystems 2020; 5:e00645-20. [View Article] [PubMed]
    [Google Scholar]
  17. Van Immerseel F, Ducatelle R, De Vos M, Boon N, Van De Wiele T et al. Butyric acid-producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease. J Med Microbiol 2010; 59:141–143 [View Article] [PubMed]
    [Google Scholar]
  18. Perraudeau F, McMurdie P, Bullard J, Cheng A, Cutcliffe C et al. Improvements to postprandial glucose control in subjects with type 2 diabetes: a multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation. BMJ Open Diabetes Res Care 2020; 8:e001319. [View Article] [PubMed]
    [Google Scholar]
  19. Gilijamse PW, Hartstra AV, Levin E, Wortelboer K, Serlie MJ et al. Treatment with Anaerobutyricum soehngenii: a pilot study of safety and dose-response effects on glucose metabolism in human subjects with metabolic syndrome. NPJ Biofilms Microbiomes 2020; 6:16 [View Article] [PubMed]
    [Google Scholar]
  20. Shetty SA, Zuffa S, Bui TPN, Aalvink S, Smidt H et al. Reclassification of Eubacterium hallii as Anaerobutyricum hallii gen. nov., comb. nov., and description of Anaerobutyricum soehngenii sp. nov., a butyrate and propionate-producing bacterium from infant faeces. Int J Syst Evol Microbiol 2018; 68:3741–3746 [View Article] [PubMed]
    [Google Scholar]
  21. Allen-Vercoe E, Daigneault M, White A, Panaccione R, Duncan SH et al. Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. Anaerobe 1976; 18:523–529
    [Google Scholar]
  22. Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 2004; 70:5810–5817 [View Article] [PubMed]
    [Google Scholar]
  23. Weghoff MC, Bertsch J, Müller V. A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol 2015; 17:670–677 [View Article] [PubMed]
    [Google Scholar]
  24. Counotte GH, Prins RA, Janssen RH, Debie MJ. Role of Megasphaera elsdenii in the Fermentation of dl-[2-C]lactate in the Rumen of Dairy Cattle. Appl Environ Microbiol 1981; 42:649–655 [View Article] [PubMed]
    [Google Scholar]
  25. Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 2014; 8:1323–1335 [View Article] [PubMed]
    [Google Scholar]
  26. Marquet P, Duncan SH, Chassard C, Bernalier-Donadille A, Flint HJ. Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol Lett 2009; 299:128–134 [View Article] [PubMed]
    [Google Scholar]
  27. Shetty SA, Boeren S, Bui TPN, Smidt H, de Vos WM. Unravelling lactate‐acetate and sugar conversion into butyrate by intestinal anaerobutyricum and anaerostipes species by comparative proteogenomics. Environ Microbiol 2020; 22:4863–4875 [View Article]
    [Google Scholar]
  28. Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJM, Garcia-Gil LJ et al. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol 2012; 78:420–428 [View Article] [PubMed]
    [Google Scholar]
  29. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12. [View Article] [PubMed]
    [Google Scholar]
  30. Miyazaki K, Martin JC, Marinsek-Logar R, Flint HJ. Degradation and utilization of xylans by the rumen anaerobe Prevotella bryantii (formerly P. ruminicola subsp. brevis) B(1)4. Anaerobe 1997; 3:373–381 [View Article] [PubMed]
    [Google Scholar]
  31. Bryant MP. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 1972; 25:1324–1328 [View Article] [PubMed]
    [Google Scholar]
  32. Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012; 28:1420–1428 [View Article] [PubMed]
    [Google Scholar]
  33. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  34. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  35. Eddy SR. Profile hidden Markov models. Bioinformatics 1998; 14:755–763 [View Article] [PubMed]
    [Google Scholar]
  36. UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019; 47:D506–D515 [View Article] [PubMed]
    [Google Scholar]
  37. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004; 32:D277–80 [View Article] [PubMed]
    [Google Scholar]
  38. Tremblay PL, Zhang T, Dar SA, Leang C, Lovley DR. The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. mBio 2012; 4:e00406–12 [View Article] [PubMed]
    [Google Scholar]
  39. Biegel E, Schmidt S, Müller V. Genetic, immunological and biochemical evidence for a Rnf complex in the acetogen Acetobacterium woodii. Environ Microbiol 2009; 11:1438–1443 [View Article] [PubMed]
    [Google Scholar]
  40. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A et al. The Pfam protein families database in 2019. Nucleic Acids Res 2019; 47:D427–D432 [View Article] [PubMed]
    [Google Scholar]
  41. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28:3150–3152 [View Article] [PubMed]
    [Google Scholar]
  42. Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 2008; 9:286–298 [View Article]
    [Google Scholar]
  43. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  44. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  45. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  46. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  47. Tria FDK, Landan G, Dagan T. Phylogenetic rooting using minimal ancestor deviation. Nat Ecol Evol 2017; 1:1–7 [View Article]
    [Google Scholar]
  48. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007; 23:127–128 [View Article] [PubMed]
    [Google Scholar]
  49. Andrews S. FastQC: a quality control tool for high throughputsequence data UK: Babraham Institute; 2010 https://www.bioinformatics babraham ac uk/projects/fastqc/
  50. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 2019; 37:907–915 [View Article] [PubMed]
    [Google Scholar]
  51. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  52. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014; 30:923–930 [View Article] [PubMed]
    [Google Scholar]
  53. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26:139–140 [View Article] [PubMed]
    [Google Scholar]
  54. Richardson AJ, Calder AG, Stewart CS, Smith A. Simultaneous determination of volatile and non-volatile acidic fermentation products of anaerobes by capillary gas chromatography. Lett Appl Microbiol 1989; 9:5–8 [View Article]
    [Google Scholar]
  55. de Luca G, de Philip P, Rousset M, Belaich JP, Dermoun Z. The NADP-reducing hydrogenase of Desulfovibrio fructosovorans: evidence for a native complex with hydrogen-dependent methyl-viologen-reducing activity. Biochem Biophys Res Commun 1998; 248:591–596 [View Article] [PubMed]
    [Google Scholar]
  56. Malki S, Saimmaime I, De Luca G, Rousset M, Dermoun Z et al. Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans. J Bacteriol 1995; 177:2628–2636 [View Article] [PubMed]
    [Google Scholar]
  57. Kuchta RD, Abeles RH. Lactate reduction in Clostridium propionicum. Purification and properties of lactyl-CoA dehydratase. J Biol Chem 1985; 260:13181–13189 [View Article] [PubMed]
    [Google Scholar]
  58. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 2009; 294:1–8 [View Article] [PubMed]
    [Google Scholar]
  59. Pinchuk GE, Rodionov DA, Yang C, Li X, Osterman AL et al. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Proc Natl Acad Sci U S A 2009; 106:2874–2879 [View Article] [PubMed]
    [Google Scholar]
  60. Jiang T, Gao C, Ma C, Xu P. Microbial lactate utilization: enzymes, pathogenesis, and regulation. Trends Microbiol 2014; 22:589–599 [View Article] [PubMed]
    [Google Scholar]
  61. Bertsch J, Parthasarathy A, Buckel W, Müller V. An electron-bifurcating caffeyl-CoA reductase. J Biol Chem 2013; 288:11304–11311 [View Article] [PubMed]
    [Google Scholar]
  62. Hetzel M, Brock M, Selmer T, Pierik AJ, Golding BT et al. Acryloyl-CoA reductase from Clostridium propionicum. An enzyme complex of propionyl-CoA dehydrogenase and electron-transferring flavoprotein. Eur J Biochem 2003; 270:902–910 [View Article] [PubMed]
    [Google Scholar]
  63. Gibello A, Collins MD, Domínguez L, Fernández-Garayzábal JF, Richardson PT. Cloning and analysis of the L-lactate utilization genes from Streptococcus iniae. Appl Environ Microbiol 1999; 65:4346–4350 [View Article] [PubMed]
    [Google Scholar]
  64. Schoelmerich MC, Katsyv A, Sung W, Mijic V, Wiechmann A et al. Regulation of lactate metabolism in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol 2018; 20:4587–4595 [View Article] [PubMed]
    [Google Scholar]
  65. Müller V, Chowdhury NP, Basen M. Electron bifurcation: a long-hidden energy-coupling mechanism. Annu Rev Microbiol 2018; 72:331–353 [View Article] [PubMed]
    [Google Scholar]
  66. Detman A, Mielecki D, Chojnacka A, Salamon A, Błaszczyk MK et al. Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors. Microb Cell Fact 2019; 18:36 [View Article] [PubMed]
    [Google Scholar]
  67. Prabhu R, Altman E, Eiteman MA. Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions. Appl Environ Microbiol 2012; 78:8564–8570 [View Article] [PubMed]
    [Google Scholar]
  68. Chen L, Shen Y, Wang C, Ding L, Zhao F et al. Megasphaera elsdenii lactate degradation pattern shifts in rumen acidosis models. Front Microbiol 2019; 10:162 [View Article]
    [Google Scholar]
  69. Johns AT. The mechanism of propionic acid formation by Clostridium propionicum. J Gen Microbiol 1952; 6:123–127 [View Article]
    [Google Scholar]
  70. Muñoz-Tamayo R, Laroche B, Walter E, Doré J, Duncan SH et al. Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. FEMS Microbiol Ecol 2011; 76:615–624 [View Article] [PubMed]
    [Google Scholar]
  71. Shetty SA, Ritari J, Paulin L, Smidt H, De Vos WM. Complete genome sequence of Eubacterium hallii strain L2-7. Genome Announc 2017; 5:e01167-17. [View Article] [PubMed]
    [Google Scholar]
  72. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 2000; 66:1654–1661 [View Article] [PubMed]
    [Google Scholar]
  73. Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS et al. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 2004; 186:2099–2106 [View Article] [PubMed]
    [Google Scholar]
  74. Holdeman LV, Moore WEC. New genus, Coprococcus, twelve new species, and emended descriptions of four previouly described species of bacteria from human feces. Int J Syst Bacteriol 1975; 25:98 [View Article]
    [Google Scholar]
  75. Chai Y, Kolter R, Losick R. A widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofilm formation. J Bacteriol 2009; 191:2423–2430 [View Article] [PubMed]
    [Google Scholar]
  76. Dong JM, Taylor JS, Latour DJ, Iuchi S, Lin EC. Three overlapping lct genes involved in L-lactate utilization by Escherichia coli. J Bacteriol 1993; 175:6671–6678 [View Article] [PubMed]
    [Google Scholar]
  77. Dym O, Pratt EA, Ho C, Eisenberg D. The crystal structure of D-lactate dehydrogenase, a peripheral membrane respiratory enzyme. Proc Natl Acad Sci U S A 2000; 97:9413–9418 [View Article] [PubMed]
    [Google Scholar]
  78. Genthner BR, Davis CL, Bryant MP. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species. Appl Environ Microbiol 1981; 42:12–19 [View Article] [PubMed]
    [Google Scholar]
  79. Kelly WJ, Henderson G, Pacheco DM, Li D, Reilly K et al. The complete genome sequence of Eubacterium limosum SA11, a metabolically versatile rumen acetogen. Stand in Genomic Sci 2016; 11:26 [View Article]
    [Google Scholar]
  80. Gillis CC, Winter MG, Chanin RB, Zhu W, Spiga L et al. Host-derived metabolites modulate transcription of salmonella genes involved in l-lactate utilization during gut colonization. Infect Immun 2019; 87:e00773-18. [View Article] [PubMed]
    [Google Scholar]
  81. Seeliger S, Janssen PH, Schink B. Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. FEMS Microbiol Lett 2002; 211:65–70 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000739
Loading
/content/journal/mgen/10.1099/mgen.0.000739
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error