1887

Abstract

The rapid emergence of multidrug-resistant is being driven largely by the spread of specific clonal groups (CGs). Of these, CG147 includes 7-gene multilocus sequence typing (MLST) sequence types (STs) ST147, ST273 and ST392. CG147 has caused nosocomial outbreaks across the world, but its global population dynamics remain unknown. Here, we report a pandrug-resistant ST147 clinical isolate from India (strain DJ) and define the evolution and global emergence of CG147. Antimicrobial-susceptibility testing following European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines and genome sequencing (Illumina and Oxford Nanopore Technologies, Unicycler assembly) were performed on strain DJ. Additionally, we collated 217 publicly available CG147 genomes [National Center for Biotechnology Information (NCBI), May 2019]. CG147 evolution was inferred within a temporal phylogenetic framework () based on a recombination-free sequence alignment (Roary/Gubbins). Comparative genomic analyses focused on resistance and virulence genes and other genetic elements (BIGSdb, Kleborate, PlasmidFinder, , ICEfinder and CRISPRCasFinder). Strain DJ had a pandrug-resistance phenotype. Its genome comprised the chromosome, seven plasmids and one linear phage-plasmid. Four carbapenemase genes were detected: and two copies of in the chromosome, and a second copy of on an 84 kb IncFII plasmid. CG147 genomes carried a mean of 13 acquired resistance genes or mutations; 63 % carried a carbapenemase gene and 83 % harboured . All CG147 genomes presented GyrA and ParC mutations and a common subtype I-E CRISPR-Cas system. ST392 and ST273 emerged in 2005 and 1995, respectively. ST147, the most represented phylogenetic branch, was itself divided into two main clades with distinct capsular loci: KL64 (74 %, DJ included, emerged in 1994 and disseminated worldwide, with carbapenemases varying among world regions) and KL10 (20 %, emerged in 2002, predominantly found in Asian countries, associated with carbapenemases NDM and OXA-48-like). Furthermore, subclades within ST147-KL64 differed at the yersiniabactin locus, OmpK35/K36 mutations, plasmid replicons and prophages. The absence of IncF plasmids in some subclades was associated with a possible activity of a CRISPR-Cas system. CG147 comprises pandrug-resistant or extensively resistant isolates, and carries multiple and diverse resistance genes and mobile genetic elements, including chromosomal . Its emergence is being driven by the spread of several phylogenetic clades marked by their own genomic features and specific temporo–spatial dynamics. These findings highlight the need for precision surveillance strategies to limit the spread of particularly concerning CG147 subsets.

Funding
This study was supported by the:
  • Institut Pasteur (Award Pasteur-Roux fellowship)
    • Principle Award Recipient: RodriguesCarla
  • European Molecular Biology Organization (Award STF_7993)
    • Principle Award Recipient: SiddhiDesai
  • Horizon 2020 (Award 773830)
    • Principle Award Recipient: CarlaRodrigues
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000737
2022-01-12
2024-09-16
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/1/mgen000737.html?itemId=/content/journal/mgen/10.1099/mgen.0.000737&mimeType=html&fmt=ahah

References

  1. CDC Antibiotic Resistance Threats in the United States, 2013 Atlanta, GA: Centers for Disease Control and Prevention; 2013
    [Google Scholar]
  2. WHO Antimicrobial Resistance: Global Report on Surveillance 2014 Geneva: World Health Organization; 2014
    [Google Scholar]
  3. Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae . Nat Rev Microbiol 2020; 18:344–359 [View Article] [PubMed]
    [Google Scholar]
  4. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 2017; 41:252–275 [View Article] [PubMed]
    [Google Scholar]
  5. Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 2017; 30:557–596 [View Article] [PubMed]
    [Google Scholar]
  6. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268–281 [View Article] [PubMed]
    [Google Scholar]
  7. de Man TJB, Lutgring JD, Lonsway DR, Anderson KF, Kiehlbauch JA et al. Genomic analysis of a pan-resistant isolate of Klebsiella pneumoniae, United States 2016. mBio 2018; 9:e00440-18 [View Article] [PubMed]
    [Google Scholar]
  8. Lázaro-Perona F, Sotillo A, Troyano-Hernáez P, Gómez-Gil R, de la Vega-Bueno Á et al. Genomic path to pandrug resistance in a clinical isolate of Klebsiella pneumoniae . Int J Antimicrob Agents 2018; 52:713–718 [View Article] [PubMed]
    [Google Scholar]
  9. Avgoulea K, Di Pilato V, Zarkotou O, Sennati S, Politi L et al. Characterization of extensively drug-resistant or pandrug-resistant sequence type 147 and 101 OXA-48-producing Klebsiella pneumoniae causing bloodstream infections in patients in an intensive care unit. Antimicrob Agents Chemother 2018; 62:e02457-17 [View Article] [PubMed]
    [Google Scholar]
  10. Guducuoglu H, Gursoy NC, Yakupogullari Y, Parlak M, Karasin G et al. OXA-48-producing Klebsiella pneumoniae: high mortality from pandrug resistance. Microb Drug Resist 2018; 24:966–972 [View Article] [PubMed]
    [Google Scholar]
  11. Zowawi HM, Forde BM, Alfaresi M, Alzarouni A, Farahat Y et al. Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae . Sci Rep 2015; 5:15082 [View Article] [PubMed]
    [Google Scholar]
  12. Peirano G, Chen L, Kreiswirth BN, Pitout JDD. Emerging antimicrobial-resistant high-risk Klebsiella pneumoniae clones ST307 and ST147. Antimicrob Agents Chemother 2020; 64:e01148-20 [View Article] [PubMed]
    [Google Scholar]
  13. Wyres KL, Wick RR, Judd LM, Froumine R, Tokolyi A et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae . PLoS Genet 2019; 15:e1008114 [View Article] [PubMed]
    [Google Scholar]
  14. Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis 2014; 20:1812–1820 [View Article] [PubMed]
    [Google Scholar]
  15. Damjanova I, Tóth A, Pászti J, Hajbel-Vékony G, Jakab M et al. Expansion and countrywide dissemination of ST11, ST15 and ST147 ciprofloxacin-resistant CTX-M-15-type beta-lactamase-producing Klebsiella pneumoniae epidemic clones in Hungary in 2005 – the new “MRSAs”?. J Antimicrob Chemother 2008; 62:978–985 [View Article] [PubMed]
    [Google Scholar]
  16. Szilágyi E, Füzi M, Damjanova I, Böröcz K, Szonyi K et al. Investigation of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae outbreaks in Hungary between 2005 and 2008. Acta Microbiol Immunol Hung 2010; 57:43–53 [View Article] [PubMed]
    [Google Scholar]
  17. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013; 13:785–796 [View Article] [PubMed]
    [Google Scholar]
  18. Zurfluh K, Nüesch-Inderbinen M, Morach M, Zihler Berner A, Hächler H et al. Extended-spectrum-β-lactamase-producing Enterobacteriaceae isolated from vegetables imported from the Dominican Republic, India, Thailand, and Vietnam. Appl Environ Microbiol 2015; 81:3115–3120 [View Article] [PubMed]
    [Google Scholar]
  19. Ovejero CM, Escudero JA, Thomas-Lopez D, Hoefer A, Moyano G et al. Highly tigecycline-resistant Klebsiella pneumoniae sequence type 11 (ST11) and ST147 isolates from companion animals. Antimicrob Agents Chemother 2017; 61:e02640-16 [View Article] [PubMed]
    [Google Scholar]
  20. Sato T, Harada K, Usui M, Tsuyuki Y, Shiraishi T et al. Tigecycline susceptibility of Klebsiella pneumoniae complex and Escherichia coli isolates from companion animals: the prevalence of tigecycline-nonsusceptible K. pneumoniae complex, including internationally expanding human pathogenic lineages. Microb Drug Resist 2018; 24:860–867 [View Article] [PubMed]
    [Google Scholar]
  21. Zogg AL, Simmen S, Zurfluh K, Stephan R, Schmitt SN et al. High prevalence of extended-spectrum β-lactamase producing Enterobacteriaceae among clinical isolates from cats and dogs admitted to a veterinary hospital in Switzerland. Front Vet Sci 2018; 5:62 [View Article] [PubMed]
    [Google Scholar]
  22. Zhang R, Li J, Wang Y, Shen J, Shen Z et al. Presence of NDM in non-E. coli Enterobacteriaceae in the poultry production environment. J Antimicrob Chemother 2019; 74:2209–2213 [View Article] [PubMed]
    [Google Scholar]
  23. Suzuki Y, Nazareno PJ, Nakano R, Mondoy M, Nakano A et al. Environmental presence and genetic characteristics of carbapenemase-producing Enterobacteriaceae from hospital sewage and river water in the Philippines. Appl Environ Microbiol 2020; 86:e01906-19 [View Article] [PubMed]
    [Google Scholar]
  24. Baron SA, Mediannikov O, Abdallah R, Kuete Yimagou E, Medkour H et al. Multidrug-resistant Klebsiella pneumoniae clones from wild chimpanzees and termites in senegal. Antimicrob Agents Chemother 2021; 65:e0255720 [View Article] [PubMed]
    [Google Scholar]
  25. CLSI Performance Standards for Antimicrobial Susceptibility Testing, Supplement M100-S26, 26th edn Wayne, PA: Clinical and Laboratory Standards Institute; 2016
    [Google Scholar]
  26. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  27. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  28. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  29. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  30. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article] [PubMed]
    [Google Scholar]
  31. Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 2019; 15:e1006650 [View Article] [PubMed]
    [Google Scholar]
  32. Diancourt L, Passet V, Verhoef J, Grimont PAD, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 2005; 43:4178–4182 [View Article] [PubMed]
    [Google Scholar]
  33. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL et al. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 2021; 12:4188 [View Article] [PubMed]
    [Google Scholar]
  34. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  35. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  36. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article] [PubMed]
    [Google Scholar]
  37. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 2018; 46:W246–W251 [View Article] [PubMed]
    [Google Scholar]
  38. Pfeifer E, Moura de Sousa JA, Touchon M, Rocha EPC. Bacteria have numerous distinctive groups of phage-plasmids with conserved phage and variable plasmid gene repertoires. Nucleic Acids Res 2021; 49:2655–2673 [View Article] [PubMed]
    [Google Scholar]
  39. Villa L, Feudi C, Fortini D, García-Fernández A, Carattoli A. Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother 2014; 58:1707–1712 [View Article] [PubMed]
    [Google Scholar]
  40. Fajardo-Lubián A, Ben Zakour NL, Agyekum A, Qi Q, Iredell JR. Host adaptation and convergent evolution increases antibiotic resistance without loss of virulence in a major human pathogen. PLoS Pathog 2019; 15:e1007218 [View Article] [PubMed]
    [Google Scholar]
  41. Rodrigues C, Machado E, Ramos H, Peixe L, Novais Â. Expansion of ESBL-producing Klebsiella pneumoniae in hospitalized patients: a successful story of international clones (ST15, ST147, ST336) and epidemic plasmids (IncR, IncFIIK). Int J Med Microbiol 2014; 304:1100–1108 [View Article] [PubMed]
    [Google Scholar]
  42. Nahid F, Zahra R, Sandegren L. A blaOXA-181-harbouring multi-resistant ST147 Klebsiella pneumoniae isolate from Pakistan that represent an intermediate stage towards pan-drug resistance. PLoS One 2017; 12:e0189438 [View Article] [PubMed]
    [Google Scholar]
  43. Alfaresi M. Whole genome sequencing of Klebsiella pneumoniae strain unravels a new model for the development of extensive drug resistance in Enterobacteriaceae. Open Microbiol J 2018; 12:195–199 [View Article] [PubMed]
    [Google Scholar]
  44. Turton JF, Payne Z, Coward A, Hopkins KL, Turton JA et al. Virulence genes in isolates of Klebsiella pneumoniae from the UK during 2016, including among carbapenemase gene-positive hypervirulent K1-ST23 and 'non-hypervirulent' types ST147, ST15 and ST383. J Med Microbiol 2018; 67:118–128 [View Article] [PubMed]
    [Google Scholar]
  45. Turton J, Davies F, Turton J, Perry C, Payne Z et al. Hybrid resistance and virulence plasmids in “high-risk” clones of Klebsiella pneumoniae, including those carrying blaNDM-5. Microorganisms 2019; 7:E326 [View Article] [PubMed]
    [Google Scholar]
  46. Coelho A, Piedra-Carrasco N, Bartolomé R, Quintero-Zarate JN, Larrosa N et al. Role of IncHI2 plasmids harbouring blaVIM-1, blaCTX-M-9, aac(6’)-Ib and qnrA genes in the spread of multiresistant Enterobacter cloacae and Klebsiella pneumoniae strains in different units at Hospital Vall d’Hebron, Barcelona, Spain. Int J Antimicrob Agents 2012; 39:514–517 [View Article] [PubMed]
    [Google Scholar]
  47. Bowers JR, Kitchel B, Driebe EM, MacCannell DR, Roe C et al. Genomic analysis of the emergence and rapid global dissemination of the clonal group 258 Klebsiella pneumoniae pandemic. PLoS One 2015; 10:e0133727 [View Article] [PubMed]
    [Google Scholar]
  48. van der Bij AK, Peirano G, Goessens WHF, van der Vorm ER, van Westreenen M et al. Clinical and molecular characteristics of extended-spectrum-beta-lactamase-producing Escherichia coli causing bacteremia in the Rotterdam area, Netherlands. Antimicrob Agents Chemother 2011; 55:3576–3578 [View Article] [PubMed]
    [Google Scholar]
  49. Newire E, Aydin A, Juma S, Enne VI, Roberts AP. Identification of a type IV-A CRISPR-Cas system located exclusively on IncHI1B/IncFIB plasmids in Enterobacteriaceae. Front Microbiol 2020; 11:1937 [View Article] [PubMed]
    [Google Scholar]
  50. Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L et al. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res 2020; 48:2000–2012 [View Article] [PubMed]
    [Google Scholar]
  51. Wyres KL, Hawkey J, Hetland MAK, Fostervold A, Wick RR et al. Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307. J Antimicrob Chemother 2019; 74:577–581 [View Article] [PubMed]
    [Google Scholar]
  52. Sonnevend Á, Ghazawi A, Hashmey R, Haidermota A, Girgis S et al. Multihospital occurrence of pan-resistant Klebsiella pneumoniae sequence type 147 with an ISEcp1-directed blaOXA-181 insertion in the mgrB gene in the United Arab Emirates. Antimicrob Agents Chemother 2017; 61:e00418-17 [View Article] [PubMed]
    [Google Scholar]
  53. Falcone M, Giordano C, Barnini S, Tiseo G, Leonildi A et al. Extremely drug-resistant NDM-9-producing ST147 Klebsiella pneumoniae causing infections in Italy, May 2020. Euro Surveill 2020; 25:2001779 [View Article] [PubMed]
    [Google Scholar]
  54. Simner PJ, Antar AAR, Hao S, Gurtowski J, Tamma PD et al. Antibiotic pressure on the acquisition and loss of antibiotic resistance genes in Klebsiella pneumoniae . J Antimicrob Chemother 2018; 73:1796–1803 [View Article] [PubMed]
    [Google Scholar]
  55. Pitout JDD, Peirano G, Kock MM, Strydom KA, Matsumura Y. The global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev 2019; 33:e00102-19 [View Article] [PubMed]
    [Google Scholar]
  56. Yoon E-J, Gwon B, Liu C, Kim D, Won D et al. Beneficial chromosomal integration of the genes for CTX-M extended-spectrum β-lactamase in Klebsiella pneumoniae for stable propagation. mSystems 2020; 5:e00459-20 [View Article] [PubMed]
    [Google Scholar]
  57. Rojas LJ, Hujer AM, Rudin SD, Wright MS, Domitrovic TN et al. NDM-5 and OXA-181 beta-lactamases, a significant threat continues to spread in the Americas. Antimicrob Agents Chemother 2017; 61:e00454-17 [View Article] [PubMed]
    [Google Scholar]
  58. Sakamoto N, Akeda Y, Sugawara Y, Takeuchi D, Motooka D et al. Genomic characterization of carbapenemase-producing Klebsiella pneumoniae with chromosomally carried bla NDM-1. Antimicrob Agents Chemother 2018; 62:e01520-18 [View Article] [PubMed]
    [Google Scholar]
  59. Takeuchi D, Akeda Y, Yoshida H, Hagiya H, Yamamoto N et al. Genomic reorganization by IS26 in a blaNDM-5-bearing FII plasmid of Klebsiella pneumoniae isolated from a patient in Japan. J Med Microbiol 2018; 67:1221–1224 [View Article] [PubMed]
    [Google Scholar]
  60. Roe CC, Vazquez AJ, Esposito EP, Zarrilli R, Sahl JW. Diversity, virulence, and antimicrobial resistance in isolates from the newly emerging Klebsiella pneumoniae ST101 lineage. Front Microbiol 2019; 10:542 [View Article] [PubMed]
    [Google Scholar]
  61. Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. mBio 2016; 7:e02162 [View Article] [PubMed]
    [Google Scholar]
  62. Holden MTG, Hsu L-Y, Kurt K, Weinert LA, Mather AE et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res 2013; 23:653–664 [View Article] [PubMed]
    [Google Scholar]
  63. Fuzi M, Rodriguez Baño J, Toth A. Global evolution of pathogenic bacteria with extensive use of fluoroquinolone agents. Front Microbiol 2020; 11:271 [View Article] [PubMed]
    [Google Scholar]
  64. Ostria-Hernández ML, Sánchez-Vallejo CJ, Ibarra JA, Castro-Escarpulli G. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae . BMC Res Notes 2015; 8:332 [View Article] [PubMed]
    [Google Scholar]
  65. Shen J, Lv L, Wang X, Xiu Z, Chen G. Comparative analysis of CRISPR-Cas systems in Klebsiella genomes. J Basic Microbiol 2017; 57:325–336 [View Article] [PubMed]
    [Google Scholar]
  66. Li H-Y, Kao C-Y, Lin W-H, Zheng P-X, Yan J-J et al. Characterization of CRISPR-Cas systems in clinical Klebsiella pneumoniae isolates uncovers its potential association with antibiotic susceptibility. Front Microbiol 2018; 9:1595 [View Article] [PubMed]
    [Google Scholar]
  67. Kamruzzaman M, Iredell JR. CRISPR-Cas system in antibiotic resistance plasmids in Klebsiella pneumoniae . Front Microbiol 2019; 10:2934 [View Article] [PubMed]
    [Google Scholar]
  68. Tang Y, Fu P, Zhou Y, Xie Y, Jin J et al. Absence of the type I-E CRISPR-Cas system in Klebsiella pneumoniae clonal complex 258 is associated with dissemination of IncF epidemic resistance plasmids in this clonal complex. J Antimicrob Chemother 2020; 75:890–895 [View Article] [PubMed]
    [Google Scholar]
  69. Zhou Y, Tang Y, Fu P, Tian D, Yu L et al. The type I-E CRISPR-Cas system influences the acquisition of blaKPC-IncF plasmid in Klebsiella pneumonia . Emerg Microbes Infect 2020; 9:1011–1022 [View Article] [PubMed]
    [Google Scholar]
  70. Mackow NA, Shen J, Adnan M, Khan AS, Fries BC et al. CRISPR-Cas influences the acquisition of antibiotic resistance in Klebsiella pneumoniae . PLoS One 2019; 14:e0225131 [View Article] [PubMed]
    [Google Scholar]
  71. López-Igual R, Bernal-Bayard J, Rodríguez-Patón A, Ghigo JM, Mazel D. Engineered toxin-intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations. Nat Biotechnol 2019; 37:755–760 [View Article] [PubMed]
    [Google Scholar]
  72. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 2014; 32:1146–1150 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000737
Loading
/content/journal/mgen/10.1099/mgen.0.000737
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error