A integrative and conjugative element with a CRISPR-Cas9 system targeting competing plasmids: a history of plasmid warfare? Open Access

Abstract

Microbial genomes are highly adaptable, with mobile genetic elements (MGEs) such as integrative conjugative elements (ICEs) mediating the dissemination of new genetic information throughout bacterial populations. This is countered by defence mechanisms such as CRISPR-Cas systems, which limit invading MGEs by sequence-specific targeting. Here we report the distribution of the pVir, pTet and PCC42 plasmids and a new 70–129 kb ICE (CampyICE1) in the foodborne bacterial pathogens and . CampyICE1 contains a degenerated Type II-C CRISPR system consisting of a sole Cas9 protein, which is distinct from the previously described Cas9 proteins from and . CampyICE1 is conserved in structure and gene order, containing blocks of genes predicted to be involved in recombination, regulation and conjugation. CampyICE1 was detected in 134/5829 (2.3 %) . genomes and 92/1347 (6.8 %) . genomes. Similar ICEs were detected in a number of non-jejuni/coli species, although these lacked a CRISPR-Cas system. CampyICE1 carries three separate short CRISPR spacer arrays containing a combination of 108 unique spacers and 16 spacer-variant families. A total of 69 spacers and 10 spacer-variant families (63.7 %) were predicted to target plasmids. The presence of a functional CampyICE1 Cas9 protein and matching anti-plasmid spacers was associated with the absence of the pVir, pTet and pCC42 plasmids (188/214 genomes, 87.9 %), suggesting that the CampyICE1-encoded CRISPR-Cas has contributed to the exclusion of competing plasmids. In conclusion, the characteristics of the CRISPR-Cas9 system on CampyICE1 suggests a history of plasmid warfare in .

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/M011216/1)
    • Principle Award Recipient: NotApplicable
  • Biotechnology and Biological Sciences Research Council (Award BB/J004529/1)
    • Principle Award Recipient: NotApplicable
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000729
2021-11-12
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/11/mgen000729.html?itemId=/content/journal/mgen/10.1099/mgen.0.000729&mimeType=html&fmt=ahah

References

  1. Rossler E, Signorini ML, Romero-Scharpen A, Soto LP, Berisvil A et al. Meta-analysis of the prevalence of thermotolerant Campylobacter in food-producing animals worldwide. Zoonoses Public Health 2019; 66:359–369 [View Article] [PubMed]
    [Google Scholar]
  2. Griekspoor P, Colles FM, McCarthy ND, Hansbro PM, Ashhurst-Smith C et al. Marked host specificity and lack of phylogeographic population structure of Campylobacter jejuni in wild birds. Mol Ecol 2013; 22:1463–1472 [View Article] [PubMed]
    [Google Scholar]
  3. Nichols GL, Richardson JF, Sheppard SK, Lane C, Sarran C. Campylobacter epidemiology: a descriptive study reviewing 1 million cases in England and Wales between 1989 and 2011. BMJ Open 2012; 2:e001179 [View Article] [PubMed]
    [Google Scholar]
  4. Ben Romdhane R, Merle R. The data behind risk analysis of Campylobacter jejuni and Campylobacter coli infections. Curr Top Microbiol Immunol 2021; 431:25–58 [View Article] [PubMed]
    [Google Scholar]
  5. Crawshaw T. A review of the novel thermophilic Campylobacter, Campylobacter hepaticus, a pathogen of poultry. Transbound Emerg Dis 2019; 66:1481–1492 [View Article] [PubMed]
    [Google Scholar]
  6. Campagnolo ER, Philipp LM, Long JM, Hanshaw NL. Pet-associated Campylobacteriosis: A persisting public health concern. Zoonoses Public Health 2018; 65:304–311 [View Article] [PubMed]
    [Google Scholar]
  7. Miller WG, Yee E, Chapman MH, Smith TPL, Bono JL et al. Comparative genomics of the Campylobacter lari group. Genome Biol Evol 2014; 6:3252–3266 [View Article] [PubMed]
    [Google Scholar]
  8. Brockhurst MA, Harrison E, Hall JPJ, Richards T, McNally A et al. The ecology and evolution of pangenomes. Curr Biol 2019; 29:R1094–R1103 [View Article] [PubMed]
    [Google Scholar]
  9. Penadés JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP. Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol 2015; 23:171–178 [View Article]
    [Google Scholar]
  10. Johnson CM, Grossman AD. Integrative and Conjugative Elements (ICEs): what they do and how they work. Annu Rev Genet 2015; 49:577–601 [View Article] [PubMed]
    [Google Scholar]
  11. Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512–537 [View Article] [PubMed]
    [Google Scholar]
  12. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 2018; 31:e00088–00017 [View Article] [PubMed]
    [Google Scholar]
  13. Burrus V. Mechanisms of stabilization of integrative and conjugative elements. Curr Opin Microbiol 2017; 38:44–50 [View Article] [PubMed]
    [Google Scholar]
  14. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol 2010; 8:317–327 [View Article] [PubMed]
    [Google Scholar]
  15. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015; 13:722–736 [View Article] [PubMed]
    [Google Scholar]
  16. McGinn J, Marraffini LA. Molecular mechanisms of CRISPR-Cas spacer acquisition. Nat Rev Microbiol 2019; 17:7–12 [View Article] [PubMed]
    [Google Scholar]
  17. Hille F, Richter H, Wong SP, Bratovič M, Ressel S et al. The Biology of CRISPR-Cas: backward and forward. Cell 2018; 172:1239–1259 [View Article] [PubMed]
    [Google Scholar]
  18. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2020; 18:67–83 [View Article] [PubMed]
    [Google Scholar]
  19. Sheppard SK, McCarthy ND, Falush D, Maiden MCJ. Convergence of Campylobacter species: implications for bacterial evolution. Science 2008; 320:237–239 [View Article] [PubMed]
    [Google Scholar]
  20. Baig A, McNally A, Dunn S, Paszkiewicz KH, Corander J et al. Genetic import and phenotype specific alleles associated with hyper-invasion in Campylobacter jejuni. BMC Genomics 2015; 16:852 [View Article] [PubMed]
    [Google Scholar]
  21. Sheppard SK, Jolley KA, Maiden MCJ. A gene-by-gene approach to bacterial population genomics: whole genome MLST of Campylobacter. Genes (Basel) 2012; 3:261–277 [View Article] [PubMed]
    [Google Scholar]
  22. Yahara K, Méric G, Taylor AJ, de Vries SPW, Murray S et al. Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork. Environ Microbiol 2017; 19:361–380 [View Article] [PubMed]
    [Google Scholar]
  23. Batchelor RA, Pearson BM, Friis LM, Guerry P, Wells JM. Nucleotide sequences and comparison of two large conjugative plasmids from different Campylobacter species. Microbiology (Reading) 2004; 150:3507–3517 [View Article] [PubMed]
    [Google Scholar]
  24. Pearson BM, Rokney A, Crossman LC, Miller WG, Wain J et al. Complete genome sequence of the Campylobacter coli clinical isolate 15-537360. Genome Announc 2013; 1:e01056–01013 [View Article] [PubMed]
    [Google Scholar]
  25. Bacon DJ, Alm RA, Burr DH, Hu L, Kopecko DJ et al. Involvement of a plasmid in virulence of Campylobacter jejuni 81-176. Infect Immun 2000; 68:4384–4390 [View Article] [PubMed]
    [Google Scholar]
  26. Marasini D, Fakhr MK. Complete genome sequences of plasmid-bearing multidrug-resistant Campylobacter jejuni and Campylobacter coli strains with type VI secretion systems, isolated from retail Turkey and Pork. Genome Announc 2017; 5:e01360–01317 [PubMed]
    [Google Scholar]
  27. Fouts DE, Mongodin EF, Mandrell RE, Miller WG, Rasko DA et al. Major structural differences and novel potential virulence mechanisms from the genomes of multiple campylobacter species. PLoS Biol 2005; 3:e15 [View Article] [PubMed]
    [Google Scholar]
  28. Parker CT, Quiñones B, Miller WG, Horn ST, Mandrell RE. Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J Clin Microbiol 2006; 44:4125–4135 [View Article] [PubMed]
    [Google Scholar]
  29. Gaasbeek EJ, Wagenaar JA, Guilhabert MR, van Putten JPM, Parker CT et al. Nucleases encoded by the integrated elements CJIE2 and CJIE4 inhibit natural transformation of Campylobacter jejuni. J Bacteriol 2010; 192:936–941 [View Article] [PubMed]
    [Google Scholar]
  30. Gaasbeek EJ, Wagenaar JA, Guilhabert MR, Wösten MMSM, van Putten JPM et al. A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni. J Bacteriol 2009; 191:2296–2306 [View Article] [PubMed]
    [Google Scholar]
  31. Clark CG, Chen C-Y, Berry C, Walker M, McCorrister SJ et al. Comparison of genomes and proteomes of four whole genome-sequenced Campylobacter jejuni from different phylogenetic backgrounds. PLoS One 2018; 13:e0190836 [View Article] [PubMed]
    [Google Scholar]
  32. Bleumink-Pluym NMC, van Alphen LB, Bouwman LI, Wösten MMSM, van Putten JPM. Identification of a functional type VI secretion system in Campylobacter jejuni conferring capsule polysaccharide sensitive cytotoxicity. PLoS Pathog 2013; 9:e1003393 [View Article] [PubMed]
    [Google Scholar]
  33. Lertpiriyapong K, Gamazon ER, Feng Y, Park DS, Pang J et al. Campylobacter jejuni type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization. PLoS One 2012; 7:e42842 [View Article] [PubMed]
    [Google Scholar]
  34. Pearson BM, Louwen R, van Baarlen P, van Vliet AHM. Differential distribution of type II CRISPR-Cas systems in agricultural and nonagricultural Campylobacter coli and Campylobacter jejuni isolates correlates with lack of shared environments. Genome Biol Evol 2015; 7:2663–2679 [View Article] [PubMed]
    [Google Scholar]
  35. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  36. Mehat JW, La Ragione RM, van Vliet AHM. Campylobacter jejuni and Campylobacter coli autotransporter genes exhibit lineage-associated distribution and decay. BMC Genomics 2020; 21:314. [View Article] [PubMed]
    [Google Scholar]
  37. Dwivedi R, Nothaft H, Garber J, Xin Kin L, Stahl M et al. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni. Mol Microbiol 2016; 101:575–589 [View Article] [PubMed]
    [Google Scholar]
  38. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  39. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007; 35:W52–7 [View Article] [PubMed]
    [Google Scholar]
  40. Bland C, Ramsey TL, Sabree F, Lowe M, Brown K et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 2007; 8:209 [View Article] [PubMed]
    [Google Scholar]
  41. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res 2004; 14:1188–1190 [View Article] [PubMed]
    [Google Scholar]
  42. Biswas A, Gagnon JN, Brouns SJJ, Fineran PC, Brown CM. CRISPRTarget: Bioinformatic prediction and analysis of crRNA targets. RNA Biol 2013; 10:817–827 [View Article] [PubMed]
    [Google Scholar]
  43. Gilchrist CLM, Chooi YH. Clinker & clustermap.js: Automatic generation of gene cluster comparison figures. Bioinformatics 2021btab007 [View Article] [PubMed]
    [Google Scholar]
  44. Rossi M, Silva M, Ribeiro-Goncalves BF, Silva DN, Machado MP et al. INNUENDO whole genome and core genome MLST schemas and datasets for Campylobacter jejuni (Version 1.0) [Data set]. Zenodo 2018 [View Article]
    [Google Scholar]
  45. Silva M, Machado MP, Silva DN, Rossi M, Moran-Gilad J et al. chewBBACA: A complete suite for gene-by-gene schema creation and strain identification. Microb Genom 2018; 4:e000166 [View Article] [PubMed]
    [Google Scholar]
  46. Zhou Z, Alikhan N-F, Sergeant MJ, Luhmann N, Vaz C et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 2018; 28:1395–1404 [View Article] [PubMed]
    [Google Scholar]
  47. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  48. Marasini D, Karki AB, Bryant JM, Sheaff RJ, Fakhr MK. Molecular characterization of megaplasmids encoding the type VI secretion system in Campylobacter jejuni isolated from chicken livers and gizzards. Sci Rep 2020; 10:12514. [View Article] [PubMed]
    [Google Scholar]
  49. Dugar G, Leenay RT, Eisenbart SK, Bischler T, Aul BU et al. CRISPR RNA-Dependent binding and cleavage of endogenous RNAs by the Campylobacter jejuni Cas9. Mol Cell 2018; 69:893–905 [View Article] [PubMed]
    [Google Scholar]
  50. Barrangou R. Nobel dreams come true for doudna and charpentier. CRISPR J 2020; 3:317–318 [View Article] [PubMed]
    [Google Scholar]
  51. Newire E, Aydin A, Juma S, Enne VI, Roberts AP. Identification of a Type IV-A CRISPR-Cas system located exclusively on IncHI1B/IncFIB plasmids in Enterobacteriaceae. Front Microbiol 2020; 11:1937. [View Article] [PubMed]
    [Google Scholar]
  52. Kamruzzaman M, Iredell JR. CRISPR-Cas system in antibiotic resistance plasmids in Klebsiella pneumoniae. Front Microbiol 2019; 10:2934. [View Article] [PubMed]
    [Google Scholar]
  53. Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L et al. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res 2020; 48:2000–2012 [View Article] [PubMed]
    [Google Scholar]
  54. McDonald ND, Regmi A, Morreale DP, Borowski JD, Boyd EF. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. BMC Genomics 2019; 20:105 [View Article] [PubMed]
    [Google Scholar]
  55. Labbate M, Orata FD, Petty NK, Jayatilleke ND, King WL et al. A genomic island in Vibrio cholerae with VPI-1 site-specific recombination characteristics contains CRISPR-Cas and type VI secretion modules. Sci Rep 2016; 6:36891. [View Article] [PubMed]
    [Google Scholar]
  56. Xiao Y, Ng S, Nam KH, Ke A. How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration. Nature 2017; 550:137–141 [View Article] [PubMed]
    [Google Scholar]
  57. Pausch P, Al-Shayeb B, Bisom-Rapp E, Tsuchida CA, Li Z et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science 2020; 369:333–337 [View Article] [PubMed]
    [Google Scholar]
  58. Pausch P, Soczek KM, Herbst DA, Tsuchida CA, Al-Shayeb B et al. DNA interference states of the hypercompact CRISPR-CasΦ effector. Nat Struct Mol Biol 2021; 28:652–661 [View Article] [PubMed]
    [Google Scholar]
  59. Hooton S, D’Angelantonio D, Hu Y, Connerton PL, Aprea G et al. Campylobacter bacteriophage DA10: an excised temperate bacteriophage targeted by CRISPR-cas. BMC Genomics 2020; 21:400 [View Article] [PubMed]
    [Google Scholar]
  60. Hooton SPT, Connerton IF. Campylobacter jejuni acquire new host-derived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein. Front Microbiol 2014; 5:744. [View Article] [PubMed]
    [Google Scholar]
  61. Kovanen SM, Kivistö RI, Rossi M, Hänninen M-L. A combination of MLST and CRISPR typing reveals dominant Campylobacter jejuni types in organically farmed laying hens. J Appl Microbiol 2014; 117:249–257 [View Article] [PubMed]
    [Google Scholar]
  62. Louwen R, Horst-Kreft D, Boer AG, Graaf L, Knegt G et al. A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain–Barré syndrome. Eur J Clin Microbiol Infect Dis 2012; 32:207–226 [View Article]
    [Google Scholar]
  63. Saha C, Horst-Kreft D, Kross I, van der Spek PJ, Louwen R et al. Campylobacter jejuni Cas9 modulates the transcriptome in Caco-2 intestinal epithelial cells. Genes (Basel) 2020; 11:E1193. [View Article] [PubMed]
    [Google Scholar]
  64. Saha C, Mohanraju P, Stubbs A, Dugar G, Hoogstrate Y et al. Guide-free Cas9 from pathogenic Campylobacter jejuni bacteria causes severe damage to DNA. Sci Adv 2020; 6:eaaz4849 [View Article] [PubMed]
    [Google Scholar]
  65. Shabbir MA, Wu Q, Shabbir MZ, Sajid A, Ahmed S et al. The CRISPR-cas system promotes antimicrobial resistance in Campylobacter jejuni. Future Microbiol 2018; 13:1757–1774 [View Article] [PubMed]
    [Google Scholar]
  66. Shabbir MAB, Tang Y, Xu Z, Lin M, Cheng G et al. The involvement of the Cas9 gene in virulence of Campylobacter jejuni. Front Cell Infect Microbiol 2018; 8:285. [View Article] [PubMed]
    [Google Scholar]
  67. Corcionivoschi N, Gundogdu O, Moran L, Kelly C, Scates P et al. Virulence characteristics of hcp (+) Campylobacter jejuni and Campylobacter coli isolates from retail chicken. Gut Pathog 2015; 7:20. [View Article] [PubMed]
    [Google Scholar]
  68. Liaw J, Hong G, Davies C, Elmi A, Sima F et al. The Campylobacter jejuni type VI secretion system enhances the oxidative stress response and host colonization. Front Microbiol 2019; 10:2864. [View Article] [PubMed]
    [Google Scholar]
  69. Brown HL, Reuter M, Hanman K, Betts RP, van Vliet AHM. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni. PLoS One 2015; 10:e0121680 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000729
Loading
/content/journal/mgen/10.1099/mgen.0.000729
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare

Most cited Most Cited RSS feed