1887

Abstract

ST131 is a globally dispersed extraintestinal pathogenic lineage contributing significantly to hospital and community acquired urinary tract and bloodstream infections. Here we describe a detailed phylogenetic analysis of the whole genome sequences of 284 Australian ST131 isolates from diverse sources, including clinical, food and companion animals, wildlife and the environment. Our phylogeny and the results of single nucleotide polymorphism (SNP) analysis show the typical ST131 clade distribution with clades A, B and C clearly displayed, but no niche associations were observed. Indeed, interspecies relatedness was a feature of this study. Thirty-five isolates (29 of human and six of wild bird origin) from clade A (32 41, 2 89, 1 141) were observed to differ by an average of 76 SNPs. Forty-five isolates from clade C1 from four sources formed a cluster with an average of 46 SNPs. Within this cluster, human sourced isolates differed by approximately 37 SNPs from isolates sourced from canines, approximately 50 SNPs from isolates from wild birds, and approximately 52 SNPs from isolates from wastewater. Many ST131 carried resistance genes to multiple antibiotic classes and while 41 (14 %) contained the complete class one integron–integrase , 128 (45 %) isolates harboured a truncated (462–1014 bp), highlighting the ongoing evolution of this element. The module –ORF–IS, conferring resistance to trimethoprim, aminoglycosides, quaternary ammonium compounds, sulphonamides, chromate and macrolides, was the most common structure. Most (73 %) Australian ST131 isolates carry at least one extended spectrum β-lactamase gene, typically and . Notably, dual -1aAB and -1AB fluoroquinolone resistant mutations, a unique feature of clade C ST131 isolates, were identified in some clade A isolates. The results of this study indicate that the the ST131 population in Australia carries diverse antimicrobial resistance genes and plasmid replicons and indicate cross-species movement of ST131 strains across diverse reservoirs.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000721
2021-12-15
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/12/mgen000721.html?itemId=/content/journal/mgen/10.1099/mgen.0.000721&mimeType=html&fmt=ahah

References

  1. Hastak P, Fourment M, Darling AE, Gottlieb T, Cheong E et al. Escherichia coli ST8196 is a novel, locally evolved, and extensively drug resistant pathogenic lineage within the ST131 clonal complex. Emerg Microbes Infect 2020; 9:1780–1792 [View Article] [PubMed]
    [Google Scholar]
  2. Pitout JDD, DeVinney R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Res 20176195 [View Article]
    [Google Scholar]
  3. Nicolas-Chanoine M-H, Bertrand X, Madec J-Y. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 2014; 27:543–574 [View Article] [PubMed]
    [Google Scholar]
  4. Banerjee R, Johnson JR. A new clone sweeps clean: the enigmatic emergence of Escherichia coli sequence type 131. Antimicrob Agents Chemother 2014; 58:4997–5004 [View Article] [PubMed]
    [Google Scholar]
  5. Nicolas-Chanoine M-H, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP et al. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2008; 61:273–281 [View Article] [PubMed]
    [Google Scholar]
  6. Dahbi G, Mora A, Mamani R, López C, Alonso MP et al. Molecular epidemiology and virulence of Escherichia coli O16:H5-ST131: comparison with H30 and H30-Rx subclones of O25b:H4-ST131. Int J Med Microbiol 2014; 304:1247–1257 [View Article] [PubMed]
    [Google Scholar]
  7. Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci U S A 2014; 111:5694–5699 [View Article] [PubMed]
    [Google Scholar]
  8. Price LB, Johnson JR, Aziz M, Clabots C, Johnston B et al. The epidemic of extended-spectrum-β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. mBio 2013; 4:e00377-13. [View Article] [PubMed]
    [Google Scholar]
  9. Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. mBio 2016; 7:e02162-15 [View Article] [PubMed]
    [Google Scholar]
  10. Finn TJ, Scriver L, Lam L, Duong M, Peirano G et al. A comprehensive account of Escherichia coli sequence type 131 in wastewater reveals an abundance of fluoroquinolone-resistant clade A strains. Appl Environ Microbiol 2020; 86:e01913-19. [View Article] [PubMed]
    [Google Scholar]
  11. Nickel JC. Practical management of recurrent urinary tract infections in premenopausal women. Rev Urol 2005; 7:11–17 [PubMed]
    [Google Scholar]
  12. Raz R, Chazan B, Kennes Y, Colodner R, Rottensterich E et al. Empiric use of trimethoprim-sulfamethoxazole (TMP-SMX) in the treatment of women with uncomplicated urinary tract infections, in a geographical area with a high prevalence of TMP-SMX-resistant uropathogens. Clin Infect Dis 2002; 34:1165–1169 [View Article] [PubMed]
    [Google Scholar]
  13. Le Saux N, Robinson J. Aminoglycosides—alive and well in treatment of pediatric infections: a case of benefit versus risk. Official J Assoc Med Microbiol Infect Dis Canada 2019; 4:1–5 [View Article]
    [Google Scholar]
  14. Kudinha T, Johnson JR, Andrew SD, Kong F, Anderson P et al. Escherichia coli sequence type 131 as a prominent cause of antibiotic resistance among urinary Escherichia coli isolates from reproductive-age women. J Clin Microbiol 2013; 51:3270–3276 [View Article] [PubMed]
    [Google Scholar]
  15. Ludden C, Decano AG, Jamrozy D, Pickard D, Morris D et al. Genomic surveillance of Escherichia coli ST131 identifies local expansion and serial replacement of subclones. Microb Genom 2020; 6: [View Article] [PubMed]
    [Google Scholar]
  16. Ben Zakour NL, Alsheikh-Hussain AS, Ashcroft MM, Khanh Nhu NT, Roberts LW et al. Sequential acquisition of virulence and fluoroquinolone resistance has shaped the evolution of Escherichia coli ST131. mBio 2016; 7:e00347-16. [View Article] [PubMed]
    [Google Scholar]
  17. Decano AG, Downing T. An Escherichia coli ST131 pangenome atlas reveals population structure and evolution across 4,071 isolates. Sci Rep 2019; 9:17394. [View Article] [PubMed]
    [Google Scholar]
  18. Reid CJ, McKinnon J, Djordjevic SP. Clonal ST131-H22 Escherichia coli strains from a healthy pig and a human urinary tract infection carry highly similar resistance and virulence plasmids. Microb Genom 2019; 5: [View Article] [PubMed]
    [Google Scholar]
  19. Liu CM, Stegger M, Aziz M, Johnson TJ, Waits K et al. Escherichia coli ST131-H22 as a foodborne uropathogen. mBio 2018; 9:e00470-18. [View Article] [PubMed]
    [Google Scholar]
  20. Roer L, Overballe-Petersen S, Hansen F, Johannesen TB, Stegger M et al. ST131 fimH22 Escherichia coli isolate with a blaCMY-2/IncI1/ST12 plasmid obtained from a patient with bloodstream infection: highly similar to E. coli isolates of broiler origin. J Antimicrob Chemother 2019; 74:557–560 [View Article] [PubMed]
    [Google Scholar]
  21. Cummins ML, Reid CJ, Roy Chowdhury P, Bushell RN, Esbert N et al. Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene. Microb Genom 2019; 5: [View Article] [PubMed]
    [Google Scholar]
  22. Johnson TJ, Siek KE, Johnson SJ, Nolan LK. DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. J Bacteriol 2006; 188:745–758 [View Article] [PubMed]
    [Google Scholar]
  23. Tivendale KA, Logue CM, Kariyawasam S, Jordan D, Hussein A et al. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infect Immun 2010; 78:3412–3419 [View Article] [PubMed]
    [Google Scholar]
  24. Skyberg JA, Johnson TJ, Johnson JR, Clabots C, Logue CM et al. Acquisition of avian pathogenic Escherichia coli plasmids by a commensal E. coli isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney. Infect Immun 2006; 74:6287–6292 [View Article] [PubMed]
    [Google Scholar]
  25. Tivendale KA, Noormohammadi AH, Allen JL, Browning GF. The conserved portion of the putative virulence region contributes to virulence of avian pathogenic Escherichia coli. Microbiology (Reading) 2009; 155:450–460 [View Article] [PubMed]
    [Google Scholar]
  26. McKinnon J, Roy Chowdhury P, Djordjevic SP. Genomic analysis of multidrug-resistant Escherichia coli ST58 causing urosepsis. Int J Antimicrob Agents 2018; 52:430–435 [View Article] [PubMed]
    [Google Scholar]
  27. McKinnon J, Roy Chowdhury P, Djordjevic SP. Molecular analysis of an IncF ColV-like plasmid lineage that carries a complex resistance locus with a trackable genetic signature. Microb Drug Resist 2020; 26:787–793 [View Article] [PubMed]
    [Google Scholar]
  28. Cointe A, Birgy A, Mariani-Kurkdjian P, Liguori S, Courroux C et al. Emerging multidrug-resistant hybrid pathotype shiga toxin-producing Escherichia coli o80 and related strains of clonal complex 165, Europe. Emerg Infect Dis 2018; 24:2262–2269 [View Article] [PubMed]
    [Google Scholar]
  29. Saidenberg ABS, Stegger M, Price LB, Johannesen TB, Aziz M et al. mcr-positive Escherichia coli ST131-H22 from poultry in Brazil. Emerg Infect Dis 2020; 26:1951–1954 [View Article] [PubMed]
    [Google Scholar]
  30. Kallonen T, Brodrick HJ, Harris SR, Corander J, Brown NM et al. Systematic longitudinal survey of invasive Escherichia coli in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131. Genome Res 2017; 27:1437–1449 [View Article]
    [Google Scholar]
  31. Johnson TJ, Danzeisen JL, Youmans B, Case K, Llop K et al. Separate F-Type plasmids have shaped the evolution of the H30 subclone of Escherichia coli sequence Type 131. mSphere 2016; 1:e00121-16. [View Article] [PubMed]
    [Google Scholar]
  32. Mahon BM, Brehony C, Cahill N, McGrath E, O’Connor L et al. Detection of OXA-48-like-producing Enterobacterales in Irish recreational water. Sci Total Environ 2019; 690:1–6 [View Article] [PubMed]
    [Google Scholar]
  33. Peirano G, Schreckenberger PC, Pitout JDD. Characteristics of NDM-1-producing Escherichia coli isolates that belong to the successful and virulent clone ST131. Antimicrob Agents Chemother 2011; 55:2986–2988 [View Article] [PubMed]
    [Google Scholar]
  34. Mahérault A-C, Kemble H, Magnan M, Gachet B, Roche D et al. Advantage of the F2:A1:B- IncF pandemic plasmid over IncC plasmids in in vitro acquisition and evolution of blaCTX-M gene-bearing plasmids in Escherichia coli. Antimicrob Agents Chemother 2019; 63:10 [View Article]
    [Google Scholar]
  35. Hayashi M, Matsui M, Sekizuka T, Shima A, Segawa T et al. Dissemination of IncF group F1:A2:B20 plasmid-harbouring multidrug-resistant Escherichia coli ST131 before the acquisition of blaCTX-M in Japan. J Glob Antimicrob Resist 2020; 23:456–465 [View Article] [PubMed]
    [Google Scholar]
  36. Villa L, García-Fernández A, Fortini D, Carattoli A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother 2010; 65:2518–2529 [View Article] [PubMed]
    [Google Scholar]
  37. Rogers BA, Ingram PR, Runnegar N, Pitman MC, Freeman JT et al. Sequence type 131 fimH30 and fimH41 subclones amongst Escherichia coli isolates in Australia and New Zealand. Int J Antimicrob Agents 2015; 45:351–358 [View Article] [PubMed]
    [Google Scholar]
  38. Rogers BA, Ingram PR, Runnegar N, Pitman MC, Freeman JT et al. Community-onset Escherichia coli infection resistant to expanded-spectrum cephalosporins in low-prevalence countries. Antimicrob Agents Chemother 2014; 58:2126–2134 [View Article] [PubMed]
    [Google Scholar]
  39. Li D, Reid CJ, Kudinha T, Jarocki VM, Djordjevic SP. Genomic analysis of trimethoprim-resistant extraintestinal pathogenic Escherichia coli and recurrent urinary tract infections. Microb Genom 2020; 6: [View Article] [PubMed]
    [Google Scholar]
  40. Hastak P, Cummins ML, Gottlieb T, Cheong E, Merlino J et al. Genomic profiling of Escherichia coli isolates from bacteraemia patients: a 3-year cohort study of isolates collected at a Sydney teaching hospital. Microb Genom 2020; 6: [View Article] [PubMed]
    [Google Scholar]
  41. Kidsley AK, White RT, Beatson SA, Saputra S, Schembri MA et al. Companion animals are spillover hosts of the multidrug-resistant human extraintestinal Escherichia coli pandemic clones ST131 and ST1193. Front Microbiol 2020; 11:1968. [View Article] [PubMed]
    [Google Scholar]
  42. Mukerji S, Stegger M, Truswell AV, Laird T, Jordan D et al. Resistance to critically important antimicrobials in Australian silver gulls (Chroicocephalus novaehollandiae) and evidence of anthropogenic origins. J Antimicrob Chemother 2019; 74:2566–2574 [View Article] [PubMed]
    [Google Scholar]
  43. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article]
    [Google Scholar]
  44. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  45. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  46. Yu G, Smith DK, Zhu H, Guan Y, Lam TT et al. ggtree : an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2016; 8:28–36 [View Article]
    [Google Scholar]
  47. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  48. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  49. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res 2019; 47:5539–5549 [View Article] [PubMed]
    [Google Scholar]
  50. Roer L, Tchesnokova V, Allesøe R, Muradova M, Chattopadhyay S et al. Development of a web tool for Escherichia coli subtyping based on fimH alleles. J Clin Microbiol 2017; 55:2538–2543 [View Article] [PubMed]
    [Google Scholar]
  51. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  52. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using plasmid finder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  53. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016; 32:2847–2849 [View Article] [PubMed]
    [Google Scholar]
  54. Stothard P, Grant JR, Van Domselaar G. Visualizing and comparing circular genomes using the CGView family of tools. Brief Bioinform 2019; 20:1576–1582 [View Article] [PubMed]
    [Google Scholar]
  55. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  56. Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol 2016; 17:238. [View Article] [PubMed]
    [Google Scholar]
  57. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 2018; 34:292–293 [View Article] [PubMed]
    [Google Scholar]
  58. Blanco J, Mora A, Mamani R, López C, Blanco M et al. Four main virotypes among extended-spectrum-β-lactamase-producing isolates of Escherichia coli O25b:H4-B2-ST131: bacterial, epidemiological, and clinical characteristics. J Clin Microbiol 2013; 51:3358–3367 [View Article] [PubMed]
    [Google Scholar]
  59. Manges AR. Escherichia coli causing bloodstream and other extraintestinal infections: tracking the next pandemic. Lancet Infect Dis 2019; 19:1269–1270 [View Article] [PubMed]
    [Google Scholar]
  60. Matsumura Y, Pitout JDD, Gomi R, Matsuda T, Noguchi T et al. Global Escherichia coli sequence type 131 clade with blaCTX-M-27 Gene. Emerg Infect Dis 2016; 22:1900–1907 [View Article] [PubMed]
    [Google Scholar]
  61. Sáenz Y, Zarazaga M, Briñas L, Ruiz-Larrea F, Torres C. Mutations in gyrA and parC genes in nalidixic acid-resistant Escherichia coli strains from food products, humans and animals. J Antimicrob Chemother 2003; 51:1001–1005 [View Article] [PubMed]
    [Google Scholar]
  62. Gillings MR. Integrons: past, present, and future. Microbiol Mol Biol Rev 2014; 78:257–277 [View Article] [PubMed]
    [Google Scholar]
  63. Stephens CM, Adams-Sapper S, Sekhon M, Johnson JR, Riley LW. Genomic analysis of factors associated with low prevalence of antibiotic resistance in extraintestinal pathogenic Escherichia coli sequence type 95 strains. mSphere 2017; 2:e00390-16. [View Article] [PubMed]
    [Google Scholar]
  64. Kaur P, Chakraborti A, Asea A. Enteroaggregative Escherichia coli: an emerging enteric food borne pathogen. Interdiscip Perspect Infect Dis 2010; 2010:254159. [View Article] [PubMed]
    [Google Scholar]
  65. Boll EJ, Overballe-Petersen S, Hasman H, Roer L, Ng K et al. Emergence of enteroaggregative Escherichia coli within the ST131 lineage as a cause of extraintestinal infections. mBio 2020; 11:e00353-20. [View Article] [PubMed]
    [Google Scholar]
  66. Sidjabat HE, Derrington P, Nimmo GR, Paterson DL. Escherichia coli ST131 producing CTX-M-15 in Australia. J Antimicrob Chemother 2010; 65:1301–1303 [View Article] [PubMed]
    [Google Scholar]
  67. Flament-Simon S-C, de Toro M, Mora A, García V, García-Meniño I et al. Whole genome sequencing and characteristics of mcr-1-harboring plasmids of porcine Escherichia coli isolates belonging to the high-risk clone O25b:H4-ST131 Clade B. Front Microbiol 2020; 11:387. [View Article] [PubMed]
    [Google Scholar]
  68. Jamborova I, Johnston BD, Papousek I, Kachlikova K, Micenkova L et al. Extensive genetic commonality among wildlife, wastewater, community, and nosocomial isolates of Escherichia coli sequence type 131 (H30R1 and H30Rx Subclones) that Carry blaCTX-M-27 or blaCTX-M-15. Antimicrob Agents Chemother 2018; 62:e00519-18. [View Article] [PubMed]
    [Google Scholar]
  69. McNally A, Oren Y, Kelly D, Pascoe B, Dunn S et al. Combined analysis of variation in core, accessory and regulatory genome regions provides a super-resolution view into the evolution of bacterial populations. PLoS Genet 2016; 12:e1006280. [View Article] [PubMed]
    [Google Scholar]
  70. Ingle DJ, Howden BP, Duchene S. Development of phylodynamic methods for bacterial pathogens phylodynamic methods for bacterial pathogens. Trends Microbiol 2021; 29:797 [View Article] [PubMed]
    [Google Scholar]
  71. Rodríguez-Beltrán J, Tourret J, Tenaillon O, López E, Bourdelier E et al. High recombinant frequency in extraintestinal pathogenic Escherichia coli strains. Mol Biol Evol 2015; 32:1708–1716 [View Article] [PubMed]
    [Google Scholar]
  72. Paul S, Linardopoulou EV, Billig M, Tchesnokova V, Price LB et al. Role of homologous recombination in adaptive diversification of extraintestinal Escherichia coli. J Bacteriol 2013; 195:231–242 [View Article] [PubMed]
    [Google Scholar]
  73. Sheppard SK, Guttman DS, Fitzgerald JR. Population genomics of bacterial host adaptation. Nat Rev Genet 2018; 19:549–565 [View Article] [PubMed]
    [Google Scholar]
  74. Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 2017; 72:2145–2155 [View Article] [PubMed]
    [Google Scholar]
  75. Forde BM, Roberts LW, Phan M-D, Peters KM, Fleming BA et al. Population dynamics of an Escherichia coli ST131 lineage during recurrent urinary tract infection. Nat Commun 2019; 10:3643. [View Article] [PubMed]
    [Google Scholar]
  76. Brilhante M, Menezes J, Belas A, Feudi C, Schwarz S et al. OXA-181-producing extraintestinal pathogenic Escherichia coli sequence type 410 isolated from a dog in Portugal. Antimicrob Agents Chemother 2020; 64: [View Article]
    [Google Scholar]
  77. Pitout JDD, Finn TJ. The evolutionary puzzle of Escherichia coli ST131. Infect Genet Evol 2020; 81:104265 [View Article] [PubMed]
    [Google Scholar]
  78. Alsharapy SA, Yanat B, Lopez-Cerero L, Nasher SS, Díaz-De-Alba P et al. Prevalence of ST131 clone producing both ESBL CTX-M-15 and AAC(6’)Ib-cr among ciprofloxacin-resistant Escherichia coli isolates from Yemen. Microb Drug Resist 2018; 24:1537–1542 [View Article] [PubMed]
    [Google Scholar]
  79. Livermore DM, Day M, Cleary P, Hopkins KL, Toleman MA et al. OXA-1 β-lactamase and non-susceptibility to penicillin/β-lactamase inhibitor combinations among ESBL-producing Escherichia coli. J Antimicrob Chemother 2019; 74:326–333 [View Article] [PubMed]
    [Google Scholar]
  80. Blanc V, Leflon-Guibout V, Blanco J, Haenni M, Madec J-Y et al. Prevalence of day-care centre children (France) with faecal CTX-M-producing Escherichia coli comprising O25b:H4 and O16:H5 ST131 strains. J Antimicrob Chemother 2014; 69:1231–1237 [View Article] [PubMed]
    [Google Scholar]
  81. Zhang L, X, Zong Z. The emergence of blaCTX-M-15-carrying Escherichia coli of ST131 and new sequence types in Western China. Ann Clin Microbiol Antimicrob 2013; 12:35. [View Article] [PubMed]
    [Google Scholar]
  82. Bonnet R, Recule C, Baraduc R, Chanal C, Sirot D et al. Effect of D240G substitution in a novel ESBL CTX-M-27. J Antimicrob Chemother 2003; 52:29–35 [View Article] [PubMed]
    [Google Scholar]
  83. Birgy A, Levy C, Nicolas-Chanoine M-H, Cointe A, Hobson CA et al. Independent host factors and bacterial genetic determinants of the emergence and dominance of Escherichia coli sequence type 131 CTX-M-27 in a community pediatric cohort study. Antimicrob Agents Chemother 2019; 63: [View Article]
    [Google Scholar]
  84. Ghosh H, Doijad S, Falgenhauer L, Fritzenwanker M, Imirzalioglu C et al. blaCTX-M-27 –Encoding Escherichia coli sequence type 131 lineage C1-M27 clone in clinical isolates, Germany. Emerg Infect Dis 2017; 23:1754–1756 [View Article]
    [Google Scholar]
  85. Melo LC, Haenni M, Saras E, Duprilot M, Nicolas-Chanoine M-H et al. Emergence of the C1-M27 cluster in ST131 Escherichia coli from companion animals in France. J Antimicrob Chemother 2019; 74:3111–3113 [View Article] [PubMed]
    [Google Scholar]
  86. Zendri F, Maciuca IE, Moon S, Jones PH, Wattret A et al. Occurrence of ESBL-producing Escherichia coli ST131, including the H30-Rx and C1-M27 subclones, among urban seagulls from the United Kingdom. Microb Drug Resist 2020; 26:697–708 [View Article] [PubMed]
    [Google Scholar]
  87. Crozat E, Philippe N, Lenski RE, Geiselmann J, Schneider D. Long-term experimental evolution in Escherichia coli. XII. DNA topology as a key target of selection. Genetics 2005; 169:523–532 [View Article] [PubMed]
    [Google Scholar]
  88. Zhong Y-M, Liu W-E, Liang X-H, Li Y-M, Jian Z-J et al. Emergence and spread of O16-ST131 and O25b-ST131 clones among faecal CTX-M-producing Escherichia coli in healthy individuals in Hunan Province, China. J Antimicrob Chemother 2015; 70:2223–2227 [View Article] [PubMed]
    [Google Scholar]
  89. Downing T. Tackling drug resistant infection outbreaks of global pandemic Escherichia coli ST131 using evolutionary and epidemiological genomics. Microorganisms 2015; 3:236–267 [View Article] [PubMed]
    [Google Scholar]
  90. Cusumano CK, Hung CS, Chen SL, Hultgren SJ. Virulence plasmid harbored by uropathogenic Escherichia coli functions in acute stages of pathogenesis. Infect Immun 2010; 78:1457–1467 [View Article] [PubMed]
    [Google Scholar]
  91. Boll EJ, Ayala-Lujan J, Szabady RL, Louissaint C, Smith RZ et al. Enteroaggregative Escherichia coli adherence fimbriae drive inflammatory cell recruitment via interactions with epithelial MUC1. mBio 2017; 8:e00717-17. [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000721
Loading
/content/journal/mgen/10.1099/mgen.0.000721
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF

Supplementary material 3

EXCEL

Supplementary material 4

PDF

Supplementary material 5

EXCEL

Supplementary material 6

PDF

Supplementary material 7

EXCEL

Supplementary material 8

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error