1887

Abstract

Powdery mildews comprise a large group of economically important phytopathogenic fungi. However, limited information exists on their mitochondrial genomes. Here, we assembled and compared the mitochondrial genomes of the powdery mildew pathogens f. sp. , , and . Included in the comparative analysis was also the mitochondrial genome of that was previously analysed. The mitochondrial genomes of the four Erysiphales exhibit a similar gene content and organization but a large variation in size, with sizes ranging from 109800 bp in f. sp. to 332165 bp in , which is the largest mitochondrial genome of a fungal pathogen reported to date. Further comparative analysis revealed an unusual bimodal GC distribution in the mitochondrial genomes of f. sp. and that was not previously observed in fungi. The cytochrome () genes of , and were also exceptionally rich in introns, which in turn harboured rare open reading frames encoding reverse transcriptases that were likely acquired horizontally. had also the longest gene (45 kb) among 703 fungal genes analysed. Collectively, these results provide novel insights into the organization of mitochondrial genomes of powdery mildew pathogens and represent valuable resources for population genetics and evolutionary studies.

Funding
This study was supported by the:
  • University of California, Davis, Dean’s Distinguished Graduate Fellowship (DDGF) program
    • Principle Award Recipient: AlexZanella Zaccaron
  • U.S. Department of Agriculture (Award 2018-03375)
    • Principle Award Recipient: IoannisStergiopoulos
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000720
2021-12-10
2022-01-27
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/12/mgen000720.html?itemId=/content/journal/mgen/10.1099/mgen.0.000720&mimeType=html&fmt=ahah

References

  1. Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell 2006; 125:124–1252 [View Article] [PubMed]
    [Google Scholar]
  2. Richardson DR, Lane DJR, Becker EM, Huang M-H, Whitnall M et al. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci U S A 2010; 107:10775–10782 [View Article] [PubMed]
    [Google Scholar]
  3. Lang BF, Gray MW, Burger G. Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 1999; 33:351–397 [View Article] [PubMed]
    [Google Scholar]
  4. Bullerwell CE, Lang BF. Fungal evolution: the case of the vanishing mitochondrion. Curr Opin Microbiol 2005; 8:369 [View Article] [PubMed]
    [Google Scholar]
  5. James TY, Pelin A, Bonen L, Ahrendt S, Sain D et al. Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr Biol 2013; 23: [View Article] [PubMed]
    [Google Scholar]
  6. Liu W, Cai Y, Zhang Q, Shu F, Chen L et al. Subchromosome-scale nuclear and complete mitochondrial genome characteristics of Morchella crassipes. IJMS 2020; 21:483 [View Article]
    [Google Scholar]
  7. Deng Y, Hsiang T, Li S, Lin L, Wang Q et al. Comparison of the mitochondrial genome sequences of six Annulohypoxylon stygium isolates suggests short fragment insertions as a potential factor leading to larger genomic size. Front Microbiol 2018; 9:2079. [View Article] [PubMed]
    [Google Scholar]
  8. Aguileta G, de Vienne DM, Ross ON, Hood ME, Giraud T et al. High variability of mitochondrial gene order among fungi. Genome Biol Evol 2014; 6:451–465 [View Article] [PubMed]
    [Google Scholar]
  9. Mardanov AV, Beletsky AV, Kadnikov VV, Ignatov AN, Ravin NV. The 203 kbp mitochondrial genome of the phytopathogenic fungus Sclerotinia borealis reveals multiple invasions of introns and genomic duplications. PLoS One 2014; 9:e107536 [View Article] [PubMed]
    [Google Scholar]
  10. Zubaer A, Wai A, Hausner G. The mitochondrial genome of Endoconidiophora resinifera is intron rich. Sci Rep 2018; 8:17591. [View Article] [PubMed]
    [Google Scholar]
  11. Saldanha R, Mohr G, Belfort M, Lambowitz AM. Group I and group II introns. FASEB J 1993; 7:15–24 [View Article] [PubMed]
    [Google Scholar]
  12. Lang BF, Laforest MJ, Burger G. Mitochondrial introns: a critical view. Trends Genet 2007; 23: [View Article] [PubMed]
    [Google Scholar]
  13. Burt A, Koufopanou V. Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr Opin Genet Dev 2004; 14: [View Article] [PubMed]
    [Google Scholar]
  14. Lambowitz AM, Zimmerly S. Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 2011; 3: [View Article] [PubMed]
    [Google Scholar]
  15. Goddard MR, Burt A. Recurrent invasion and extinction of a selfish gene. Proc Natl Acad Sci U S A 1999; 96: [View Article] [PubMed]
    [Google Scholar]
  16. Hausner G. Fungal mitochondrial genomes, plasmids and introns. In Arora DK, Khachatourians GG. eds Fungal Genomics Elsevier; pp 101–131
    [Google Scholar]
  17. Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M et al. The strobilurin fungicides. Pest Manag Sci 2002; 58: [View Article] [PubMed]
    [Google Scholar]
  18. Fernández-Ortuño D, Torés JA, de Vicente A, Pérez-García A. Mechanisms of resistance to QoI fungicides in phytopathogenic fungi. Int Microbiol 2008; 11:1–9 [PubMed]
    [Google Scholar]
  19. Banno S, Yamashita K, Fukumori F, Okada K, Uekusa H et al. Characterization of QoI resistance in Botrytis cinerea and identification of two types of mitochondrial cytochrome b gene. Plant Pathol 2009; 58:120–129 [View Article]
    [Google Scholar]
  20. Luo CX, Hu MJ, Jin X, Yin LF, Bryson PK et al. An intron in the cytochrome b gene of Monilinia fructicola mitigates the risk of resistance development to QoI fungicides. Pest Manag Sci 2010; 66: [View Article] [PubMed]
    [Google Scholar]
  21. Braun U, Cook RT. Taxonomic manual of Erysiphales (powdery mildews) CBS; 2012
    [Google Scholar]
  22. Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N et al. The global burden of pathogens and pests on major food crops. Nat Ecol Evol 2019; 3:430–439 [View Article] [PubMed]
    [Google Scholar]
  23. Fondevilla S, Rubiales D. Powdery mildew control in pea. A review. Agron Sustain Dev 2011; 32:401–409 [View Article]
    [Google Scholar]
  24. Warkentin TD, Rashid KY, Xue AG. Fungicidal control of powdery mildew in field pea. Can J Plant Sci 1996; 76:933–935 [View Article]
    [Google Scholar]
  25. Gadoury DM, Cadle-Davidson L, Wilcox WF, Dry IB, Seem RC et al. Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol Plant Pathol 2012; 13:1–16 [View Article] [PubMed]
    [Google Scholar]
  26. Braun U. A monograph of the Erysiphales (powdery mildews). Beih Zur Nova Hedwig 19871–700
    [Google Scholar]
  27. Adam L, Somerville SC. Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant J 1996; 9: [View Article] [PubMed]
    [Google Scholar]
  28. Zaccaron AZ, De Souza JT, Stergiopoulos I. The mitochondrial genome of the grape powdery mildew pathogen Erysiphe necator is intron rich and exhibits a distinct gene organization. Sci Rep 2021; 11:13924 [View Article] [PubMed]
    [Google Scholar]
  29. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  30. Bushnell B. BBMap: a fast, accurate, splice-aware aligner; 2014 http://sourceforge.net/projects/bbmap
  31. Frantzeskakis L, Kracher B, Kusch S, Yoshikawa-Maekawa M, Bauer S et al. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics 2018; 19:381 [View Article] [PubMed]
    [Google Scholar]
  32. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19: [View Article] [PubMed]
    [Google Scholar]
  33. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  34. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  35. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  36. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  37. Farinas C, Gluck-Thaler E, Slot JC, Peduto Hand F. Whole-genome sequence of the phlox powdery mildew pathogen Golovinomyces magnicellulatus strain FPH2017-1. Microbiol Resour Announc 2019; 8:e00852-19. [View Article] [PubMed]
    [Google Scholar]
  38. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: [View Article] [PubMed]
    [Google Scholar]
  39. Valach M, Burger G, Gray MW, Lang BF. Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules. Nucleic Acids Res 2014; 42: [View Article] [PubMed]
    [Google Scholar]
  40. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 2015; 12: [View Article] [PubMed]
    [Google Scholar]
  41. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES et al. Integrative genomics viewer. Nat Biotechnol 2011; 29: [View Article] [PubMed]
    [Google Scholar]
  42. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 2013; 69: [View Article] [PubMed]
    [Google Scholar]
  43. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K et al. Database resources of the national center for biotechnology information. Nucleic Acids Research 2007; 36:D13–D21 [View Article]
    [Google Scholar]
  44. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 2017; 45:D200–D203 [View Article] [PubMed]
    [Google Scholar]
  45. Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet 2000; 16: [View Article] [PubMed]
    [Google Scholar]
  46. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19: [View Article] [PubMed]
    [Google Scholar]
  47. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999; 27: [View Article] [PubMed]
    [Google Scholar]
  48. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30: [View Article] [PubMed]
    [Google Scholar]
  49. Pagès H, Aboyoun P, Gentleman R, DebRoy S. Biostrings: Efficient manipulation of biological strings. R Package Version 2; 2016
    [Google Scholar]
  50. R Core Team R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020 https://www.R-project.org/
  51. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25: [View Article] [PubMed]
    [Google Scholar]
  52. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32: [View Article] [PubMed]
    [Google Scholar]
  53. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  54. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  55. Wolfsberg TG, Schafer S, Tatusov RL, Tatusov TA. Organelle genome resource at NCBI. Trends Biochem Sci 2001; 26:199–203 [View Article] [PubMed]
    [Google Scholar]
  56. Kans J. Entrez Direct: E-utilities on the Unix command line; 2013 https://www.ncbi.nlm.nih.gov/books/NBK179288/
  57. Vallières C, Trouillard M, Dujardin G, Meunier B. Deleterious effect of the Qo inhibitor compound resistance-conferring mutation G143A in the intron-containing cytochrome b gene and mechanisms for bypassing It. Appl Environ Microbiol 2011; 77: [View Article] [PubMed]
    [Google Scholar]
  58. Kim S, Jung M, Oh EA, Ho Kim T, Kim JG. Mitochondrial genome of the Podosphaera xanthii : a plant pathogen causes powdery mildew in cucurbits. Mitochondrial DNA Part B 2019; 4:4172–4173 [View Article]
    [Google Scholar]
  59. Liu W, Cai Y, Zhang Q, Chen L, Shu F et al. The mitochondrial genome of Morchella importuna (272.2 kb) is the largest among fungi and contains numerous introns, mitochondrial non-conserved open reading frames and repetitive sequences. Int J Biol Macromol 2020; 143:373–381 [View Article] [PubMed]
    [Google Scholar]
  60. Li W, Zhang F, Gao L. SMRT-based mitochondrial genome of the edible mushroom Morchella conica. Mitochondrial DNA Part B 2020; 5:3201–3202 [View Article]
    [Google Scholar]
  61. Li Q, Chen C, Xiong C, Jin X, Chen Z et al. Comparative mitogenomics reveals large-scale gene rearrangements in the mitochondrial genome of two Pleurotus species. Appl Microbiol Biotechnol 2018; 102:6143–6153 [View Article] [PubMed]
    [Google Scholar]
  62. Chen C, Li Q, Fu R, Wang J, Xiong C et al. Characterization of the mitochondrial genome of the pathogenic fungus Scytalidium auriculariicola (Leotiomycetes) and insights into its phylogenetics. Sci Rep 2019; 9:17447. [View Article] [PubMed]
    [Google Scholar]
  63. Burt A, Trivers R, Burt A. Genes in conflict. In Genes in Conflict: The Biology of Selfish Genetic Elements Harvard University Press; 2006 [View Article]
    [Google Scholar]
  64. Plotnikova JM, Reuber TL, Ausubel FM, Pfister DH. Powdery mildew pathogenesis of Arabidopsis thaliana. Mycologia 1998; 90:1009 [View Article]
    [Google Scholar]
  65. Guha TK, Wai A, Mullineux S. T, Hausner G. The intron landscape of the mtDNA cytb gene among the Ascomycota: introns and intron-encoded open reading frames. Mitochondrial DNA Part A 2017; 29:1015–1024 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000720
Loading
/content/journal/mgen/10.1099/mgen.0.000720
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error