1887

Abstract

is a recently recognized species in the genus that causes diarrhoea. The population structure, genetic diversity and genomic features have not been fully examined. Here, 169 isolates from different sources and regions in China were sequenced and combined with 312 publicly available genomes (from additional 14 countries) for genomic analyses. The population was divided into two clades and eight lineages, with lineage 3 (L3), L5 and L8 more common in China. Clinical isolates were observed in all clades/lineages. Virulence genes were found to be distributed differently among lineages: subtypes of the intimin encoding gene and the cytolethal distending toxin gene were lineage associated, and the second type three secretion system (ETT2) island was truncated in L3 and L6. Seven new subtypes and one new subtype (-VI) were identified. Alarmingly, 85.9 % of the Chinese isolates were predicted to be multidrug-resistant (MDR) with 35.9 % harbouring genes capable of conferring resistance to 10 to 14 different drug classes. The majority of the MDR isolates were of poultry source from China and belonged to four sequence types (STs) [ST4638, ST4479, ST4633 and ST4488]. Thirty-four plasmids with some carrying MDR and virulence genes, and 130 prophages were identified from 17 complete genomes. The 130 intact prophages were clustered into five groups, with group five prophages harbouring more virulence genes. We further identified three specific genes as markers for the identification of this species. Our findings provided fundamental insights into the population structure, virulence variation and drug resistance of .

Funding
This study was supported by the:
  • university of new south wales
    • Principle Award Recipient: LuoLijuan
  • australian research council discovery grant (Award DP170101917)
  • state key laboratory of infectious disease prevention and control, china cdc (Award 2016SKLID309)
  • national key research and development program of china (Award 2017YFC1601502)
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000710
2021-12-09
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/12/mgen000710.html?itemId=/content/journal/mgen/10.1099/mgen.0.000710&mimeType=html&fmt=ahah

References

  1. Gomes TAT, Ooka T, Hernandes RT, Yamamoto D, Hayashi T et al. Escherichia albertii Pathogenesis. EcoSal Plus 2020; 9:1–18 [View Article]
    [Google Scholar]
  2. Huys G, Cnockaert M, Janda JM, Swings J. Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children. Int J Syst Evol Microbiol 2003; 53:807–810 [View Article] [PubMed]
    [Google Scholar]
  3. Albert MJ, Alam K, Islam M, Montanaro J, Rahaman AS et al. Hafnia alvei, a probable cause of diarrhea in humans. Infect Immun 1991; 59:1507–1513 [View Article] [PubMed]
    [Google Scholar]
  4. Ooka T, Seto K, Kawano K, Kobayashi H, Etoh Y et al. Clinical significance of Escherichia albertii. Emerg Infect Dis 2012; 18:488–492 [View Article] [PubMed]
    [Google Scholar]
  5. Inglis TJJ, Merritt AJ, Bzdyl N, Lansley S, Urosevic MN. First bacteraemic human infection with Escherichia albertii. New Microbes New Infect 2015; 8:171–173 [View Article] [PubMed]
    [Google Scholar]
  6. Janda JM, Abbott SL, Albert MJ. Prototypal diarrheagenic strains of Hafnia alvei are actually members of the genus Escherichia. J Clin Microbiol 1999; 37:2399–2401 [View Article] [PubMed]
    [Google Scholar]
  7. Ooka T, Tokuoka E, Furukawa M, Nagamura T, Ogura Y et al. Human gastroenteritis outbreak associated with Escherichia albertii, Japan. Emerg Infect Dis 2013; 19:144–146 [View Article] [PubMed]
    [Google Scholar]
  8. Masuda K, Ooka T, Akita H, Hiratsuka T, Takao S et al. Epidemiological aspects of Escherichia albertii outbreaks in Japan and genetic characteristics of the causative pathogen. Foodborne Pathog Dis 2020; 17:144–150 [View Article] [PubMed]
    [Google Scholar]
  9. Oaks JL, Besser TE, Walk ST, Gordon DM, Beckmen KB et al. Escherichia albertii in wild and domestic birds. Emerg Infect Dis 2010; 16:638–646 [View Article] [PubMed]
    [Google Scholar]
  10. Wang H, Li Q, Bai X, Xu Y, Zhao A et al. Prevalence of eae-positive, lactose non-fermenting Escherichia albertii from retail raw meat in China. Epidemiol Infect 2016; 144:45–52 [View Article] [PubMed]
    [Google Scholar]
  11. Asoshima N, Matsuda M, Shigemura K, Honda M, Yoshida H et al. Isolation of Escherichia albertii from Raw Chicken Liver in Fukuoka City, Japan. Jpn J Infect Dis 2015; 68:248–250 [View Article] [PubMed]
    [Google Scholar]
  12. Grillová L, Sedláček I, Páchníková G, Staňková E, Švec P et al. Characterization of four Escherichia albertii isolates collected from animals living in Antarctica and Patagonia. J Vet Med Sci 2018; 80:138–146 [View Article] [PubMed]
    [Google Scholar]
  13. Ooka T, Ogura Y, Katsura K, Seto K, Kobayashi H et al. Defining the genome features of Escherichia albertii, an emerging enteropathogen closely related to Escherichia coli. Genome Biol Evol 2015; 7:3170–3179 [View Article] [PubMed]
    [Google Scholar]
  14. Tobe T, Beatson SA, Taniguchi H, Abe H, Bailey CM et al. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci U S A 2006; 103:14941–14946 [View Article] [PubMed]
    [Google Scholar]
  15. Shulman A, Yair Y, Biran D, Sura T, Otto A et al. The Escherichia coli Type III secretion system 2 has a global effect on cell surface. mBio 2018; 9:e01070–01018 [View Article] [PubMed]
    [Google Scholar]
  16. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother 2019; 63:e00483–00419 [View Article] [PubMed]
    [Google Scholar]
  17. Li Q, Wang H, Xu Y, Bai X, Wang J et al. Multidrug-Resistant Escherichia albertii: Co-occurrence of β-Lactamase and MCR-1 Encoding Genes. Front Microbiol 2018; 9:258. [View Article] [PubMed]
    [Google Scholar]
  18. Lima MP, Yamamoto D, Santos AC de M, Ooka T, Hernandes RT et al. Phenotypic characterization and virulence-related properties of Escherichia albertii strains isolated from children with diarrhea in Brazil. Pathog Dis 2019; 77:1–13 [View Article]
    [Google Scholar]
  19. Nakamura K, Murase K, Sato MP, Toyoda A, Itoh T et al. Differential dynamics and impacts of prophages and plasmids on the pangenome and virulence factor repertoires of Shiga toxin-producing Escherichia coli O145:H28. Microb Genom 2020; 6:1–13 [View Article] [PubMed]
    [Google Scholar]
  20. Lindsey RL, Rowe LA, Batra D, Smith P, Strockbine NA. PacBio genome sequences of eight Escherichia albertii strains isolated from humans in the United States. Microbiol Resour Announc 2019; 8:1–3 [View Article] [PubMed]
    [Google Scholar]
  21. Ooka T, Seto K, Ogura Y, Nakamura K, Iguchi A et al. O-antigen biosynthesis gene clusters of Escherichia albertii: their diversity and similarity to Escherichia coli gene clusters and the development of an O-genotyping method. Microb Genom 2019; 5:11e000314 [View Article] [PubMed]
    [Google Scholar]
  22. Shen R, Fan J-B, Campbell D, Chang W, Chen J et al. High-throughput SNP genotyping on universal bead arrays. Mutat Res 2005; 573:70–82 [View Article] [PubMed]
    [Google Scholar]
  23. Eid J, Fehr A, Gray J, Luong K, Lyle J et al. Real-time DNA sequencing from single polymerase molecules. Science 2009; 323:133–138 [View Article] [PubMed]
    [Google Scholar]
  24. Lindsey RL, Garcia-Toledo L, Fasulo D, Gladney LM, Strockbine N. Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii. J Microbiol Methods 2017; 140:1–4 [View Article]
    [Google Scholar]
  25. Souvorov A, Agarwala R, Lipman DJ. SKESA: strategic k-mer extension for scrupulous assemblies. Genome Biol 2018; 19:153. [View Article] [PubMed]
    [Google Scholar]
  26. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article] [PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  28. Hu D, Liu B, Wang L, Reeves PR. Living trees: high-quality reproducible and reusable construction of bacterial phylogenetic trees. Mol Biol Evol 2020; 37:563–575 [View Article] [PubMed]
    [Google Scholar]
  29. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res 2019; 47:5539–5549 [View Article] [PubMed]
    [Google Scholar]
  30. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  31. Wirth T, Falush D, Lan R, Colles F, Mensa P et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 2006; 60:1136–1151 [View Article] [PubMed]
    [Google Scholar]
  32. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  33. Zhang X, Payne M, Nguyen T, Kaur S, Lan R. Cluster-specific gene markers enhance shigella and enteroinvasive escherichia coli in silico serotyping. Microb Genom 2021 [View Article]
    [Google Scholar]
  34. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  35. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  36. Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol 2016; 17:238. [View Article] [PubMed]
    [Google Scholar]
  37. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res 2016; 44:D694–7 [View Article] [PubMed]
    [Google Scholar]
  38. Ito K, Iida M, Yamazaki M, Moriya K, Moroishi S et al. Intimin types determined by heteroduplex mobility assay of intimin gene (eae)-positive Escherichia coli strains. J Clin Microbiol 2007; 45:1038–1041 [View Article] [PubMed]
    [Google Scholar]
  39. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  40. Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom 2018; 4: [View Article] [PubMed]
    [Google Scholar]
  41. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–21 [View Article] [PubMed]
    [Google Scholar]
  42. Krumsiek J, Arnold R, Rattei T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 2007; 23:1026–1028 [View Article] [PubMed]
    [Google Scholar]
  43. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 2018; 34:292–293 [View Article] [PubMed]
    [Google Scholar]
  44. Gao NL, Zhang C, Zhang Z, Hu S, Lercher MJ et al. MVP: a microbe-phage interaction database. Nucleic Acids Res 2018; 46:D700–D707 [View Article] [PubMed]
    [Google Scholar]
  45. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 2004; 186:1518–1530 [View Article] [PubMed]
    [Google Scholar]
  46. Foster-Nyarko E, Alikhan N-F, Ravi A, Thomson NM, Jarju S et al. Genomic diversity of Escherichia coli isolates from backyard chickens and guinea fowl in the Gambia. Microb Genom 2021; 7: [View Article]
    [Google Scholar]
  47. Gaytán MO, Martínez-Santos VI, Soto E, González-Pedrajo B. Type Three Secretion System in Attaching and Effacing Pathogens. Front Cell Infect Microbiol 2016; 6:129. [View Article] [PubMed]
    [Google Scholar]
  48. Pickett CL, Whitehouse CA. The cytolethal distending toxin family. Trends Microbiol 1999; 7:292–297 [View Article] [PubMed]
    [Google Scholar]
  49. Hinenoya A, Yasuda N, Mukaizawa N, Sheikh S, Niwa Y et al. Association of cytolethal distending toxin-II gene-positive Escherichia coli with Escherichia albertii, an emerging enteropathogen. Int J Med Microbiol 2017; 307:564–571 [View Article] [PubMed]
    [Google Scholar]
  50. Tóth I, Nougayrède J-P, Dobrindt U, Ledger TN, Boury M et al. Cytolethal distending toxin type I and type IV genes are framed with lambdoid prophage genes in extraintestinal pathogenic Escherichia coli. Infect Immun 2009; 77:492–500 [View Article] [PubMed]
    [Google Scholar]
  51. Ling J, Pan H, Gao Q, Xiong L, Zhou Y et al. Aerobactin synthesis genes iucA and iucC contribute to the pathogenicity of avian pathogenic Escherichia coli O2 strain E058. PLoS One 2013; 8:e57794 [View Article]
    [Google Scholar]
  52. Galardini M, Clermont O, Baron A, Busby B, Dion S et al. Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study. PLoS Genet 2020; 16:e1009065 [View Article]
    [Google Scholar]
  53. Girón JA, Gómez-Duarte OG, Jarvis KG, Kaper JB. Longus pilus of enterotoxigenic Escherichia coli and its relatedness to other type-4 pili--a minireview. Gene 1997; 192:39–43 [View Article] [PubMed]
    [Google Scholar]
  54. Gomez-Duarte OG, Chattopadhyay S, Weissman SJ, Giron JA, Kaper JB et al. Genetic diversity of the gene cluster encoding longus, a type IV pilus of enterotoxigenic Escherichia coli. J Bacteriol 2007; 189:9145–9149 [View Article] [PubMed]
    [Google Scholar]
  55. Saldaña-Ahuactzi Z, Rodea GE, Cruz-Córdova A, Rodríguez-Ramírez V, Espinosa-Mazariego K et al. Effects of lng Mutations on LngA Expression, Processing, and CS21 Assembly in Enterotoxigenic Escherichia coli E9034A. Front Microbiol 2016; 7:1201 [View Article] [PubMed]
    [Google Scholar]
  56. Octavia S, Lan R. Shigella and Shigellosis. In Tang Y-W, Sussman M, Liu D, Poxton I, Schwartzman J. eds Molecular Medical Microbiology Boston: Academic Press; 2015 pp 1147–1168
    [Google Scholar]
  57. Savarino SJ, Fasano A, Watson J, Martin BM, Levine MM et al. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 represents another subfamily of E. coli heat-stable toxin. Proc Natl Acad Sci U S A 1993; 90:3093–3097 [View Article] [PubMed]
    [Google Scholar]
  58. Bleriot I, Trastoy R, Blasco L, Fernández-Cuenca F, Ambroa A et al. Genomic analysis of 40 prophages located in the genomes of 16 carbapenemase-producing clinical strains of Klebsiella pneumoniae. Microb Genom 2020; 6:1–18 [View Article]
    [Google Scholar]
  59. Hinenoya A, Ichimura H, Yasuda N, Harada S, Yamada K et al. Development of a specific cytolethal distending toxin (cdt) gene (Eacdt)-based PCR assay for the detection of Escherichia albertii. Diagn Microbiol Infect Dis 2019; 95:119–124 [View Article] [PubMed]
    [Google Scholar]
  60. Hyma KE, Lacher DW, Nelson AM, Bumbaugh AC, Janda JM et al. Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J Bacteriol 2005; 187:619–628 [View Article] [PubMed]
    [Google Scholar]
  61. Hinenoya A, Shima K, Asakura M, Nishimura K, Tsukamoto T et al. Molecular characterization of cytolethal distending toxin gene-positive Escherichia coli from healthy cattle and swine in Nara, Japan. BMC Microbiol 2014; 14:97. [View Article] [PubMed]
    [Google Scholar]
  62. Yang K, Pagaling E, Yan T. Estimating the prevalence of potential enteropathogenic Escherichia coli and intimin gene diversity in a human community by monitoring sanitary sewage. Appl Environ Microbiol 2014; 80:119–127 [View Article] [PubMed]
    [Google Scholar]
  63. Schwidder M, Heinisch L, Schmidt H. Genetics, toxicity, and distribution of enterohemorrhagic Escherichia coli Hemolysin. Toxins 2019; 11:502 [View Article]
    [Google Scholar]
  64. Patrick M, Gray MD, Sandkvist M, Johnson TL. Type II Secretion in Escherichia coli. EcoSal Plus 2010; 4: [View Article] [PubMed]
    [Google Scholar]
  65. Grys TE, Siegel MB, Lathem WW, Welch RA. The StcE protease contributes to intimate adherence of enterohemorrhagic Escherichia coli O157:H7 to host cells. Infect Immun 2005; 73:1295–1303 [View Article] [PubMed]
    [Google Scholar]
  66. Walters LL, Raterman EL, Grys TE, Welch RA. Atypical Shigella boydii 13 encodes virulence factors seen in attaching and effacing Escherichia coli. FEMS Microbiol Lett 2012; 328:20–25 [View Article] [PubMed]
    [Google Scholar]
  67. Eyler RF, Shvets K. Clinical pharmacology of antibiotics. Clin J Am Soc Nephrol 2019; 14:1080–1090 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000710
Loading
/content/journal/mgen/10.1099/mgen.0.000710
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error