1887

Abstract

The medically relevant species complex has a variety of phenotypic presentations but shows relatively little genetic differences. Conventional barcodes, such as the internal transcribed spacer (ITS) region or the beta-tubulin gene, are not able to completely resolve the relationships between these closely related taxa. , and are currently accepted as separate species. However, the status of certain variants, including the morphotypes and and the morphotype , remains to be deciphered. We conducted the first phylogenomic analysis of the species complex by studying 3105 core genes of 18 new strains from the BCCM/IHEM culture collection and nine publicly available genomes. Our analyses revealed a highly resolved phylogenomic tree with six separate clades. , and were confirmed in their status of species. The morphotypes and all grouped in their own respective clade with high support, suggesting that these morphotypes should be reinstituted to the species-level. Robinson-Foulds distance analyses showed that a combination of two markers (a ubiquitin-protein transferase and a MYB DNA-binding domain-containing protein) can mirror the phylogeny obtained using genomic data, and thus represent potential new markers to accurately distinguish the species belonging to the complex.

Funding
This study was supported by the:
  • ULiege (Award “Crédit de démarrage 2012” SFRD-12/04)
    • Principle Award Recipient: DenisBaurain
  • B2/191/P2/BCCM GEN-ERA (Award B2/191/P2/BCCM GEN-ERA)
    • Principle Award Recipient: PierreBecker
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000707
2021-11-03
2021-12-04
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/11/mgen000707.html?itemId=/content/journal/mgen/10.1099/mgen.0.000707&mimeType=html&fmt=ahah

References

  1. Gräser Y, Kuijpers AF, Presber W, de Hoog GS. Molecular taxonomy of the trichophyton rubrum complex. J Clin Microbiol 2000; 38:3329–3336 [View Article] [PubMed]
    [Google Scholar]
  2. de Hoog GS, Dukik K, Monod M, Packeu A, Stubbe D et al. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia 2017; 182:5–31 [View Article] [PubMed]
    [Google Scholar]
  3. Packeu A, Stubbe D, Roesems S, Goens K, Van Rooij P et al. Lineages within the Trichophyton rubrum complex. Mycopathologia 2020; 185:123–136 [View Article] [PubMed]
    [Google Scholar]
  4. Zhan P, Dukik K, Li D, Sun J, Stielow JB et al. Phylogeny of dermatophytes with genomic character evaluation of clinically distinct Trichophyton rubrum and T. violaceum. Stud Mycol 2018; 89:153–175 [View Article] [PubMed]
    [Google Scholar]
  5. Su H, Packeu A, Ahmed SA, Al-Hatmi AMS, Blechert O et al. Species distinction in the Trichophyton rubrum complex. J Clin Microbiol 2019; 57:e00352-19 [View Article] [PubMed]
    [Google Scholar]
  6. Faggi E, Pini G, Campisi E, Bertellini C, Difonzo E et al. Application of PCR to distinguish common species of dermatophytes. J Clin Microbiol 2001; 39:3382–3385 [View Article] [PubMed]
    [Google Scholar]
  7. Martinez DA, Oliver BG, Gräser Y, Goldberg JM, Li W et al. Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. mBio 2012; 3:e00259-12 [View Article] [PubMed]
    [Google Scholar]
  8. Burmester A, Shelest E, Glöckner G, Heddergott C, Schindler S et al. Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biol 2011; 12:R7 [View Article] [PubMed]
    [Google Scholar]
  9. Persinoti GF, Martinez DA, Li W, Döğen A, Billmyre RB et al. Whole-genome analysis illustrates global clonal population structure of the ubiquitous dermatophyte pathogen Trichophyton rubrum. Genetics 2018; 208:1657–1669 [View Article] [PubMed]
    [Google Scholar]
  10. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  11. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res 2017; 27:824–834 [View Article] [PubMed]
    [Google Scholar]
  12. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J et al. Binning metagenomic contigs by coverage and composition. Nat Methods 2014; 11:1144–1146 [View Article]
    [Google Scholar]
  13. Saary P, Mitchell AL, Finn RD. Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC. Genome Biol 2020; 21:244 [View Article] [PubMed]
    [Google Scholar]
  14. Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S et al. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol 2019; 20:224 [View Article] [PubMed]
    [Google Scholar]
  15. Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 2017; 11:2864–2868 [View Article] [PubMed]
    [Google Scholar]
  16. Campbell MS, Holt C, Moore B, Yandell M. Genome annotation and curation using MAKER and MAKER-P. Curr Protoc Bioinformatics 2014; 48:4 [View Article] [PubMed]
    [Google Scholar]
  17. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 2011; 29:644–652
    [Google Scholar]
  18. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  19. Van Vlierberghe M, Philippe H, Baurain D. Broadly sampled orthologous groups of eukaryotic proteins for the phylogenetic study of plastid-bearing lineages. BMC Res Notes 2021; 14:143 [View Article] [PubMed]
    [Google Scholar]
  20. Rodríguez A, Burgon JD, Lyra M, Irisarri I, Baurain D et al. ferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Mol Phylogenet Evol 2017; 115:16–26 [View Article] [PubMed]
    [Google Scholar]
  21. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  22. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  23. Roure B, Rodriguez-Ezpeleta N, Philippe H. SCaFoS: a tool for selection, concatenation and fusion of sequences for phylogenomics. BMC Evol Biol 2007; 7 Suppl 1:S2 [View Article] [PubMed]
    [Google Scholar]
  24. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article] [PubMed]
    [Google Scholar]
  25. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author; 2004 http://www.evolution.gs.washington.edu/phylip.html. https://ci.nii.ac.jp/naid/10027221536/
  26. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  27. Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 2013; 4:n [View Article]
    [Google Scholar]
  28. Robinson DF, Foulds LR. Comparison of phylogenetic trees. Mathematical Biosciences 1981; 53:131–147 [View Article]
    [Google Scholar]
  29. Smith MR. Information theoretic generalized Robinson-Foulds metrics for comparing phylogenetic trees. Bioinformatics 2020; 36:5007–5013 [View Article] [PubMed]
    [Google Scholar]
  30. R Core Team R: a language and environment for statistical computing; 2014 https://www.R-project.org/
  31. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019; 35:526–528 [View Article] [PubMed]
    [Google Scholar]
  32. Vanbreuseghem R, Rosenthal SA. Trichophyton kuryangei n. sp., a new African dermatophyte. Ann Parasitol Hum Comp 1961; 36:797–803 [View Article] [PubMed]
    [Google Scholar]
  33. Bodin E. Les Champignons parasites de l’homme Paris: Masson; 1902
    [Google Scholar]
  34. Sabouraud R. Le trichophyton de la poule (Trichophyton rosaceum) et la maladie humaine qu’il determine. Arch Med Exper Anat Path 1909; 274–298:
    [Google Scholar]
  35. Kane J, Summerbell R, Krajden S, Sigler L, Land G. Laboratory Handbook of Dermatophytes (A Clinical Guide and Laboratory Manual of Dermatophytes and Other Filamentous Fungi from Skin, Hair and Nails) Belmont (USA): Star Publishing Company; 1997
    [Google Scholar]
  36. Cochet G, Doby-Dubois M, Deblock S, Doby JM, Vaiva C. n.d Contribution à la connaissance des teignes infantiles du Cameroun. Annales de Parasitologie Humaine et Comparée 32:580–589
    [Google Scholar]
  37. Capella-Gutiérrez S, Marcet-Houben M, Gabaldón T. Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol 2012; 10:47 [View Article] [PubMed]
    [Google Scholar]
  38. Steenwyk JL, Shen X-X, Lind AL, Goldman GH, Rokas A et al. A robust phylogenomic time tree for biotechnologically and medically important fungi in the genera Aspergillus and Penicillium. mBio 2019; 10:e00925-19 [View Article]
    [Google Scholar]
  39. Galindo LJ, López-García P, Torruella G, Karpov S, Moreira D. Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nat Commun 2021; 12:4973 [View Article] [PubMed]
    [Google Scholar]
  40. Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 2007; 35:D61–5 [View Article] [PubMed]
    [Google Scholar]
  41. Cornet L, Bertrand AR, Hanikenne M, Javaux EJ, Wilmotte A et al. Metagenomic assembly of new (sub)polar Cyanobacteria and their associated microbiome from non-axenic cultures. Microb Genom 2018; 4:e000212 [View Article] [PubMed]
    [Google Scholar]
  42. Degnan JH, Salter LA. Gene tree distributions under the coalescent process. Evolution 2005; 59:24–37 [View Article] [PubMed]
    [Google Scholar]
  43. Wang K, Lenstra JA, Liu L, Hu Q, Ma T et al. complete lineage sorting rather than hybridization explains the inconsistent phylogeny of the wisent. Commun Biol 2018; 1:169 [View Article]
    [Google Scholar]
  44. Hallett M, Lagergren J, Tofigh A. Simultaneous identification of duplications and lateral transfers. In Proceedings of the eighth annual international conference on Resaerch in computational molecular biology New York, NY, USA: Association for Computing Machinery; pp 347–356 [PubMed]
    [Google Scholar]
  45. Fernández R, Gabaldon T, Dessimoz C. Orthology: Definitions, Prediction, and Impact on Species Phylogeny Inference. Scornavacca C, Delsuc F, Galtier N. eds In Phylogenetics in the Genomic Era No commercial publisher | Authors open access book; p 2
    [Google Scholar]
  46. Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D. Pangenomics comes of age: from bacteria to plant and animal applications. Trends Genet 2020; 36:132–145 [View Article] [PubMed]
    [Google Scholar]
  47. Cornet L, Magain N, Baurain D, Lutzoni F. Exploring syntenic conservation across genomes for phylogenetic studies of organisms subjected to horizontal gene transfers: A case study with Cyanobacteria and cyanolichens. Mol Phylogenet Evol 2021; 162:107100 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000707
Loading
/content/journal/mgen/10.1099/mgen.0.000707
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error