GBS-SBG - GBS Serotyping by Genome Sequencing Open Access

Abstract

Group B (GBS; ) is the most common cause of neonatal meningitis and a rising cause of sepsis in adults. Recently, it has also been shown to cause foodborne disease. As with many other bacteria, the polysaccharide capsule of GBS is antigenic, enabling its use for strain serotyping. Recent advances in DNA sequencing have made sequence-based typing attractive (as has been implemented for several other bacteria, including , species complex, , and others). For GBS, existing WGS-based serotyping systems do not provide complete coverage of all known GBS serotypes (specifically including subtypes of serotype III), and none are simultaneously compatible with the two most common data types, raw short reads and assembled sequences. Here, we create a serotyping database (GBS-SBG, GBS Serotyping by Genome Sequencing), with associated scripts and running instructions, that can be used to call all currently described GBS serotypes, including subtypes of serotype III, using both direct short-read- and assembly-based typing. We achieved higher concordance using GBS-SBG on a previously reported data set of 790 strains. We further validated GBS-SBG on a new set of 572 strains, achieving 99.8% concordance with PCR-based molecular serotyping using either short-read- or assembly-based typing. The GBS-SBG package is publicly available and will hopefully accelerate and simplify serotyping by sequencing for GBS.

Funding
This study was supported by the:
  • Genome Institute of Singapore
    • Principle Award Recipient: L ChenSwaine
  • Singapore Millennium Foundation
    • Principle Award Recipient: M.S. BarkhamTimothy
  • National Medical Research Council (Award CIRG19NOV-0024)
    • Principle Award Recipient: L ChenSwaine
  • National Medical Research Council (Award NMRC/CIRG/1467/2017)
    • Principle Award Recipient: L ChenSwaine
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000688
2021-12-13
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/12/mgen000688.html?itemId=/content/journal/mgen/10.1099/mgen.0.000688&mimeType=html&fmt=ahah

References

  1. Tiruvayipati S, Tang WY, Barkham TMS, Chen S. GBS-SBG - GBS Serotyping by Genome Sequencing figshare Figshare 2021 [View Article]
    [Google Scholar]
  2. Manning SD, Neighbors K, Tallman PA, Gillespie B, Marrs CF. Prevalence of group B Streptococcus colonization and potential for transmission by casual contact in healthy young men and women. Clin Infect Dis 2004; 39:380–388 [View Article] [PubMed]
    [Google Scholar]
  3. Foxman B, Gillespie B, Manning SD, Howard LJ, Tallman P. Incidence and duration of group B Streptococcus by serotype among male and female college students living in a single dormitory. Am J Epidemiol 2006; 163:544–551 [View Article] [PubMed]
    [Google Scholar]
  4. Bliss SJ, Manning SD, Tallman P, Baker CJ, Pearlman MD. Group B Streptococcus colonization in male and nonpregnant female university students: a cross-sectional prevalence study. Clin Infect Dis 2002; 34:184–190 [View Article] [PubMed]
    [Google Scholar]
  5. Baker CJ, Barrett FF, Gordon RC, Yow MD. Suppurative meningitis due to streptococci of Lancefield group B: a study of 33 infants. J Pediatr 1973; 82:724–729 [View Article] [PubMed]
    [Google Scholar]
  6. Barton LL, Feigin RD, Lins R. Group B beta hemolytic streptococcal meningitis in infants. J Pediatr 1973; 82:719–723 [View Article] [PubMed]
    [Google Scholar]
  7. Berardi A, Tzialla C, Riva M, Cerbo RM, Creti R. Group B streptococcus: early- and late-onset infections. J Chemother 2007; 19:24–27 [View Article] [PubMed]
    [Google Scholar]
  8. Nanduri SA, Petit S, Smelser C, Apostol M, Alden NB. Epidemiology of Invasive Early-Onset and Late-Onset Group B Streptococcal Disease in the United States, 2006 to 2015: Multistate Laboratory and Population-Based Surveillance. JAMA Pediatr 2019; 173:224–233 [View Article] [PubMed]
    [Google Scholar]
  9. Farley MM, Harvey RC, Stull T, Smith JD, Schuchat A. A population-based assessment of invasive disease due to group B Streptococcus in nonpregnant adults. N Engl J Med 1993; 328:1807–1811 [View Article] [PubMed]
    [Google Scholar]
  10. Francois Watkins LK, McGee L, Schrag SJ, Beall B, Jain JH. Epidemiology of Invasive Group B Streptococcal Infections Among Nonpregnant Adults in the United States, 2008-2016. JAMA Intern Med 2019; 179:479–488 [View Article] [PubMed]
    [Google Scholar]
  11. Phares CR, Lynfield R, Farley MM, Mohle-Boetani J, Harrison LH. Epidemiology of invasive group B streptococcal disease in the United States, 1999-2005. JAMA 2008; 299:2056–2065 [View Article] [PubMed]
    [Google Scholar]
  12. Schuchat A. Epidemiology of group B streptococcal disease in the United States: shifting paradigms. Clin Microbiol Rev 1998; 11:497–513 [View Article] [PubMed]
    [Google Scholar]
  13. Tan S, Lin Y, Foo K, Koh HF, Tow C. Group B Streptococcus Serotype III Sequence Type 283 Bacteremia Associated with Consumption of Raw Fish, Singapore. Emerg Infect Dis 2016; 22:1970–1973 [View Article] [PubMed]
    [Google Scholar]
  14. Kalimuddin S, Chen SL, Lim CTK. Epidemic of severe Streptococcus agalactiae sequence type 283 infections in Singapore associated with the consumption of raw freshwater fish: A. Clin Infect Dis 2015
    [Google Scholar]
  15. Barkham T, Zadoks RN, Azmai MNA, Baker S, Bich VTN. One hypervirulent clone, sequence type 283, accounts for a large proportion of invasive Streptococcus agalactiae isolated from humans and diseased tilapia in Southeast Asia. PLoS Negl Trop Dis 2019; 13:e0007421 [View Article] [PubMed]
    [Google Scholar]
  16. Bishop EJ, Shilton C, Benedict S, Kong F, Gilbert GL. Necrotizing fasciitis in captive juvenile Crocodylus porosus caused by Streptococcus agalactiae: an outbreak and review of the animal and human literature. Epidemiol Infect 2007; 135:1248–1255 [View Article] [PubMed]
    [Google Scholar]
  17. Edelstein RM, Pegram RG. Contagious skin necrosis of Somali camels associated with Streptococcus agalactiae . Trop Anim Health Prod 1974; 6:255–256 [View Article] [PubMed]
    [Google Scholar]
  18. Robinson JA, Meyer FP. Streptococcal fish pathogen. J Bacteriol 1966; 92:512 [View Article] [PubMed]
    [Google Scholar]
  19. Tavella A, Bettini A, Cocchi M, Idrizi I, Colorio S. Isolation of Streptococcus agalactiae in a female llama (Lama glama) in South Tyrol (Italy). BMC Vet Res 2018; 14:343 [View Article] [PubMed]
    [Google Scholar]
  20. Evans JJ, Bohnsack JF, Klesius PH, Whiting AA, Garcia JC. Phylogenetic relationships among Streptococcus agalactiae isolated from piscine, dolphin, bovine and human sources: a dolphin and piscine lineage associated with a fish epidemic in Kuwait is also associated with human neonatal infections in Japan. J Med Microbiol 2008; 57:1369–1376 [View Article] [PubMed]
    [Google Scholar]
  21. Sørensen UBS, Poulsen K, Ghezzo C, Margarit I, Kilian M. Emergence and global dissemination of host-specific Streptococcus agalactiae clones. mBio 2010; 1:e00178-10 [View Article] [PubMed]
    [Google Scholar]
  22. Wilkinson HW, Moody MD. Serological relationships of type I antigens of group B streptococci. J Bacteriol 1969; 97:629–634 [View Article] [PubMed]
    [Google Scholar]
  23. Kong F, Gowan S, Martin D, James G, Gilbert GL. Serotype identification of group B Streptococci by PCR and sequencing. J Clin Microbiol 2002; 40:216–226 [View Article] [PubMed]
    [Google Scholar]
  24. Imperi M, Pataracchia M, Alfarone G, Baldassarri L, Orefici G. A multiplex PCR assay for the direct identification of the capsular type (Ia to IX) of Streptococcus agalactiae . J Microbiol Methods 2010; 80:212–214 [View Article] [PubMed]
    [Google Scholar]
  25. Kong F, Gowan S, Martin D, James G, Gilbert GL. Serotype identification of group B streptococci by PCR and sequencing. J Clin Microbiol 2002; 40:216–226 [View Article] [PubMed]
    [Google Scholar]
  26. Ip M, Cheuk ESC, Tsui MHY, Kong F, Leung TN. Identification of a Streptococcus agalactiae serotype III subtype 4 clone in association with adult invasive disease in Hong Kong. J Clin Microbiol 2006; 44:4252–4254 [View Article] [PubMed]
    [Google Scholar]
  27. Kalimuddin S, Chen SL, Lim CTK, Koh TH, Tan TY. 2015 Epidemic of severe Streptococcus agalactiae sequence type 283 infections in Singapore associated with the consumption of raw freshwater fish: a detailed analysis of clinical, epidemiological, and bacterial sequencing data. Clin Infect Dis 2017; 64:S145–S152 [View Article] [PubMed]
    [Google Scholar]
  28. Chen SL. Genomic insights into the distribution and evolution of group B Streptococcus . Front Microbiol 2019; 10:1447 [View Article] [PubMed]
    [Google Scholar]
  29. Yang Y, Liu Y, Ding Y, Yi L, Ma Z et al. Molecular characterization of Streptococcus agalactiae isolated from bovine mastitis in eastern China. PLoS One 2013; 8:e67755
    [Google Scholar]
  30. Zhao Z, Kong F, Martinez G, Zeng X, Gottschalk M. Molecular serotype identification of Streptococcus agalactiae of bovine origin by multiplex PCR-based reverse line blot (mPCR/RLB) hybridization assay. FEMS Microbiol Lett 2006; 263:236–239 [View Article] [PubMed]
    [Google Scholar]
  31. Leal CAG, Queiroz GA, Pereira FL, Tavares GC, Figueiredo HCP. Streptococcus agalactiae sequence type 283 in farmed fish. Emerg Infect Dis 2019; 25:776–779 [View Article] [PubMed]
    [Google Scholar]
  32. Finch LA, Martin DR. Human and bovine group B streptococci: two distinct populations. J Appl Bacteriol 1984; 57:273–278 [View Article] [PubMed]
    [Google Scholar]
  33. Oliveira ICM, De Mattos MC, Areal MFT, Ferreira-Carvalho BT, Figuiredo AMS. Pulsed-field gel electrophoresis of human group B streptococci isolated in Brazil. J Chemother 2005; 17:258–263 [View Article] [PubMed]
    [Google Scholar]
  34. Pereira UP, Mian GF, Oliveira ICM, Benchetrit LC, Costa GM. Genotyping of Streptococcus agalactiae strains isolated from fish, human and cattle and their virulence potential in Nile tilapia. Vet Microbiol 2010; 140:186–192 [View Article] [PubMed]
    [Google Scholar]
  35. Zadoks RN, Middleton JR, McDougall S, Katholm J, Schukken YH. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J Mammary Gland Biol Neoplasia 2011; 16:357–372 [View Article] [PubMed]
    [Google Scholar]
  36. Liu G, Zhu J, Chen K, Gao T, Yao H. Development of Streptococcus agalactiae vaccines for tilapia. Dis Aquat Organ 2016; 122:163–170 [View Article] [PubMed]
    [Google Scholar]
  37. Arakere G, Flores AE, Ferrieri P, Frasch CE. Inhibition enzyme-linked immunosorbent assay for serotyping of group B streptococcal isolates. J Clin Microbiol 1999; 37:2564–2567 [View Article] [PubMed]
    [Google Scholar]
  38. Cropp CB, Zimmerman RA, Jelinkova J, Auernheimer AH, Bolin RA et al. Serotyping of Group B streptococci by slide agglutination fluorescence microscopy, and microimmunodiffusion. J Lab Clin Med 1974; 84:594–603 [PubMed]
    [Google Scholar]
  39. Håkansson S, Burman LG, Henrichsen J, Holm SE. Novel coagglutination method for serotyping group B streptococci. J Clin Microbiol 1992; 30:3268–3269 [View Article] [PubMed]
    [Google Scholar]
  40. Holm SE, Håkansson S. A simple and sensitive enzyme immunoassay for determination of soluble type-specific polysaccharide from group B streptococci. J Immunol Methods 1988; 106:89–94 [View Article] [PubMed]
    [Google Scholar]
  41. Zuerlein TJ, Christensen B, Hall RT. Latex agglutination detection of group-B streptococcal inoculum in urine. Diagn Microbiol Infect Dis 1991; 14:191–194 [View Article] [PubMed]
    [Google Scholar]
  42. Ke D, Ménard C, Picard FJ, Boissinot M, Ouellette M et al. Development of conventional and real-time PCR assays for the rapid detection of Group B streptococci. Clin Chem 2000; 46:324–331 [PubMed]
    [Google Scholar]
  43. Nagano Y, Nagano N, Takahashi S, Murono K, Fujita K. Restriction endonuclease digest patterns of chromosomal DNA from group B beta-haemolytic streptococci. J Med Microbiol 1991; 35:297–303 [View Article] [PubMed]
    [Google Scholar]
  44. Rolland K, Marois C, Siquier V, Cattier B, Quentin R. Genetic features of Streptococcus agalactiae strains causing severe neonatal infections, as revealed by pulsed-field gel electrophoresis and hylB gene analysis. J Clin Microbiol 1999; 37:1892–1898 [View Article] [PubMed]
    [Google Scholar]
  45. Sellin M, Olofsson C, Håkansson S, Norgren M. Genotyping of the Capsule Gene Cluster (cps) in nontypeable group B streptococci reveals two majorcps allelic variants of serotypes III and VII. J Clin Microbiol 2000; 38:3420–3428 [View Article] [PubMed]
    [Google Scholar]
  46. Ibrahim GM, Morin PM. Salmonella serotyping using whole genome sequencing. Front Microbiol 2018; 9:2993 [View Article] [PubMed]
    [Google Scholar]
  47. Diep B, Barretto C, Portmann A-C, Fournier C, Karczmarek A. Salmonella serotyping; comparison of the traditional method to a microarray-based method and an in silico platform using whole genome sequencing data. Front Microbiol 2019; 10:2554 [View Article] [PubMed]
    [Google Scholar]
  48. Epping L, van Tonder AJ, Gladstone RA. The Global Pneumococcal Sequencing Consortium Bentley SD. SeroBA: rapid high-throughput serotyping of Streptococcus pneumoniae from whole genome sequence data. Microb Genom 2018; 4: [View Article]
    [Google Scholar]
  49. Jenkins C. Whole-genome sequencing data for serotyping Escherichia coli—it’s time for a change!. J Clin Microbiol 2015; 53:2402–2403 [View Article] [PubMed]
    [Google Scholar]
  50. Ingle DJ, Valcanis M, Kuzevski A, Tauschek M, Inouye M et al. In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages. Microb Genom 2016; 2:e000064 [View Article]
    [Google Scholar]
  51. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli . J Clin Microbiol 2014; 52:1501–1510 [View Article] [PubMed]
    [Google Scholar]
  52. Wick RR, Heinz E, Holt KE, Wyres KL. Kaptive web: user-friendly capsule and lipopolysaccharide serotype prediction for Klebsiella genomes. J Clin Microbiol 2018; 56:e00197-18 [View Article] [PubMed]
    [Google Scholar]
  53. Sheppard AE, Vaughan A, Jones N, Turner P, Turner C. Capsular typing method for Streptococcus agalactiae using whole-genome sequence data. J Clin Microbiol 2016; 54:1388–1390 [View Article] [PubMed]
    [Google Scholar]
  54. Kapatai G, Patel D, Efstratiou A, Chalker VJ. Comparison of molecular serotyping approaches of Streptococcus agalactiae from genomic sequences. BMC Genomics 2017; 18:429 [View Article]
    [Google Scholar]
  55. Metcalf BJ, Chochua S, Gertz RE, Hawkins PA, Ricaldi J et al. Short-read whole genome sequencing for determination of antimicrobial resistance mechanisms and capsular serotypes of current invasive Streptococcus agalactiae recovered in the USA. Clin Microbiol Infect 2017; 23:574 [View Article]
    [Google Scholar]
  56. Poyart C, Tazi A, Réglier-Poupet H, Billoët A, Tavares N. Multiplex PCR assay for rapid and accurate capsular typing of group B streptococci. J Clin Microbiol 2007; 45:1985–1988 [View Article] [PubMed]
    [Google Scholar]
  57. Inouye M, Dashnow H, Raven L-. A, Schultz MB, Pope BJ. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014; 6:90 [View Article] [PubMed]
    [Google Scholar]
  58. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article] [PubMed]
    [Google Scholar]
  59. Gao S, Sung W-. K, Nagarajan N. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences. J Comput Biol 2011; 18:1681–1691 [View Article] [PubMed]
    [Google Scholar]
  60. Gao S, Bertrand D, Nagarajan N. FinIS: Improved in silico finishing using an exact quadratic programming formulation. In Algorithms in Bioinformatics Berlin Heidelberg: Springer; 2012 pp 314–325
    [Google Scholar]
  61. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  62. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  63. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009; 25:1189–1191 [View Article] [PubMed]
    [Google Scholar]
  64. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  65. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  66. Chaffin DO, Beres SB, Yim HH, Rubens CE. The serotype of type Ia and III group B streptococci is determined by the polymerase gene within the polycistronic capsule operon. J Bacteriol 2000; 182:4466–4477 [View Article] [PubMed]
    [Google Scholar]
  67. Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL. Salmonella serotype determination utilizing high-throughput genome sequencing data. J Clin Microbiol 2015; 53:1685–1692 [View Article] [PubMed]
    [Google Scholar]
  68. Kapatai G, Coelho J, Platt S, Chalker VJ. Whole genome sequencing of group A Streptococcus: development and evaluation of an automated pipeline for emmgene typing. PeerJ 2017; 5:e3226
    [Google Scholar]
  69. Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Scheutz F. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J Clin Microbiol 2015; 53:2410–2426 [View Article] [PubMed]
    [Google Scholar]
  70. Rosini R, Campisi E, De Chiara M, Tettelin H, Rinaudo D. Genomic analysis reveals the molecular basis for capsule loss in the group B Streptococcus population. PLoS One 2015; 10:e0125985 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000688
Loading
/content/journal/mgen/10.1099/mgen.0.000688
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare

Most cited Most Cited RSS feed