1887

Abstract

The opportunistic pathogen chronically infects the lungs of patients with cystic fibrosis (CF). During infection the bacteria evolve and adapt to the lung environment. Here we use genomic, transcriptomic and phenotypic approaches to compare multiple isolates of collected more than 20 years apart during a chronic infection in a CF patient. Complete genome sequencing of the isolates, using short- and long-read technologies, showed that a genetic bottleneck occurred during infection and was followed by diversification of the bacteria. A 125 kb deletion, an 0.9 Mb inversion and hundreds of smaller mutations occurred during evolution of the bacteria in the lung, with an average rate of 17 mutations per year. Many of the mutated genes are associated with infection or antibiotic resistance. RNA sequencing was used to compare the transcriptomes of an earlier and a later isolate. Substantial reprogramming of the transcriptional network had occurred, affecting multiple genes that contribute to continuing infection. Changes included greatly reduced expression of flagellar machinery and increased expression of genes for nutrient acquisition and biofilm formation, as well as altered expression of a large number of genes of unknown function. Phenotypic studies showed that most later isolates had increased cell adherence and antibiotic resistance, reduced motility, and reduced production of pyoverdine (an iron-scavenging siderophore), consistent with genomic and transcriptomic data. The approach of integrating genomic, transcriptomic and phenotypic analyses reveals, and helps to explain, the plethora of changes that undergoes to enable it to adapt to the environment of the CF lung during a chronic infection.

Funding
This study was supported by the:
  • canadian institutes for health research
    • Principle Award Recipient: RogerC. Levesque
  • cystic fibrosis canada
    • Principle Award Recipient: RogerC. Levesque
  • otago medical research foundation (Award AG 330)
    • Principle Award Recipient: IainLamont
  • health research council of new zealand (Award 17/372)
    • Principle Award Recipient: IainLamont
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000681
2021-11-26
2024-09-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/11/mgen000681.html?itemId=/content/journal/mgen/10.1099/mgen.0.000681&mimeType=html&fmt=ahah

References

  1. Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 2019; 10:539 [View Article] [PubMed]
    [Google Scholar]
  2. Talwalkar JS, Murray TS. The approach to Pseudomonas aeruginosa in cystic fibrosis. Clin Chest Med 2016; 37:69–81 [View Article] [PubMed]
    [Google Scholar]
  3. Ramsay KA, Wardell SJT, Patrick WM, Brockway B, Reid DW et al. Genomic and phenotypic comparison of environmental and patient-derived isolates of Pseudomonas aeruginosa suggest that antimicrobial resistance is rare within the environment. J Med Microbiol 2019; 68:1591–1595 [View Article] [PubMed]
    [Google Scholar]
  4. Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 2016; 24:327–337 [View Article] [PubMed]
    [Google Scholar]
  5. Camus L, Vandenesch F, Moreau K. From genotype to phenotype: adaptations of Pseudomonas aeruginosa to the cystic fibrosis environment. Microb Genom 2021; 7:000513 [View Article] [PubMed]
    [Google Scholar]
  6. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22:582–610 [View Article] [PubMed]
    [Google Scholar]
  7. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019; 37:177–192 [View Article] [PubMed]
    [Google Scholar]
  8. Rehman A, Patrick WM, Lamont IL. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. J Med Microbiol 2019; 68:1–10 [View Article] [PubMed]
    [Google Scholar]
  9. Wardell SJT, Rehman A, Martin LW, Winstanley C, Patrick WM et al. A large-scale whole-genome comparison shows that experimental evolution in response to antibiotics predicts changes in naturally evolved clinical Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:01619
    [Google Scholar]
  10. Lopez-Causape C, Cabot G, Del Barrio-Tofino E, Oliver A. The versatile mutational resistome of Pseudomonas aeruginosa. Front Microbiol 2018; 9:685 [View Article] [PubMed]
    [Google Scholar]
  11. Kohler T, Michea-Hamzehpour M, Epp SF, Pechere JC. Carbapenem activities against Pseudomonas aeruginosa: respective contributions of OprD and efflux systems. Antimicrob Agents Chemother 1999; 43:424–427 [View Article] [PubMed]
    [Google Scholar]
  12. Huszczynski SM, Lam JS, Khursigara CM. The role of Pseudomonas aeruginosa lipopolysaccharide in bacterial pathogenesis and physiology. Pathogens 2019; 9:E6 [View Article] [PubMed]
    [Google Scholar]
  13. Krahn T, Gilmour C, Tilak J, Fraud S, Kerr N. Determinants of intrinsic aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2012; 56:5591–5602 [View Article]
    [Google Scholar]
  14. Cabot G, Florit-Mendoza L, Sanchez-Diener I, Zamorano L, Oliver A. Deciphering beta-lactamase-independent beta-lactam resistance evolution trajectories in Pseudomonas aeruginosa. J Antimicrob Chemother 2018; 73:3322–3331 [View Article] [PubMed]
    [Google Scholar]
  15. Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2011; 2:65 [View Article] [PubMed]
    [Google Scholar]
  16. Cazares A, Moore MP, Hall JPJ, Wright LL, Grimes M. A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas. Nat Commun 2020; 11:1370 [View Article] [PubMed]
    [Google Scholar]
  17. Hector A, Griese M, Hartl D. Oxidative stress in cystic fibrosis lung disease: an early event, but worth targeting?. Eur Respir J 2014; 44:17–19 [View Article] [PubMed]
    [Google Scholar]
  18. Lopes SP, Azevedo NF, Pereira MO. Microbiome in cystic fibrosis: Shaping polymicrobial interactions for advances in antibiotic therapy. Crit Rev Microbiol 2015; 41:353–365 [View Article] [PubMed]
    [Google Scholar]
  19. Marvig RL, Johansen HK, Molin S, Jelsbak L. Genome analysis of a transmissible lineage of Pseudomonas aeruginosa reveals pathoadaptive mutations and distinct evolutionary paths of hypermutators. PLoS Genet 2013; 9:e1003741 [View Article] [PubMed]
    [Google Scholar]
  20. Bianconi I, D’Arcangelo S, Esposito A, Benedet M, Piffer E. Persistence and microevolution of Pseudomonas aeruginosa in the cystic fibrosis lung: a single-patient longitudinal genomic study. Front Microbiol 2018; 9:3242 [View Article] [PubMed]
    [Google Scholar]
  21. Klockgether J, Cramer N, Fischer S, Wiehlmann L, Tummler B. Long-term microevolution of Pseudomonas aeruginosa differs between mildly and severely affected cystic fibrosis lungs. Am J Respir Cell Mol Biol 2018; 59:246–256 [View Article] [PubMed]
    [Google Scholar]
  22. Marvig RL, Dolce D, Sommer LM, Petersen B, Ciofu O. Within-host microevolution of Pseudomonas aeruginosa in Italian cystic fibrosis patients. BMC Microbiol 2015; 15:218 [View Article] [PubMed]
    [Google Scholar]
  23. Cullen L, McClean S. Bacterial adaptation during chronic respiratory infections. Pathogens 2015; 4:66–89 [View Article]
    [Google Scholar]
  24. Faure E, Kwong K, Nguyen D. Pseudomonas aeruginosa in chronic lung infections: how to adapt within the host?. Front Immunol 2018; 9:2416 [View Article] [PubMed]
    [Google Scholar]
  25. Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JAJ. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 2021; 19:331–342 [View Article] [PubMed]
    [Google Scholar]
  26. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 2006; 103:8487–8492 [View Article] [PubMed]
    [Google Scholar]
  27. Lopez-Causape C, Rojo-Molinero E, Mulet X, Cabot G, Moya B. Clonal dissemination, emergence of mutator lineages and antibiotic resistance evolution in Pseudomonas aeruginosa cystic fibrosis chronic lung infection. PLoS One 2013; 8:e71001 [View Article] [PubMed]
    [Google Scholar]
  28. Lopez-Causape C, Sommer LM, Cabot G, Rubio R, Ocampo-Sosa AA. Evolution of the Pseudomonas aeruginosa mutational resistome in an international Cystic Fibrosis clone. Sci Rep 2017; 7:5555 [View Article] [PubMed]
    [Google Scholar]
  29. Hoboth C, Hoffmann R, Eichner A, Henke C, Schmoldt S. Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J Infect Dis 2009; 200:118–130 [View Article] [PubMed]
    [Google Scholar]
  30. Marvig RL, Sommer LM, Molin S, Johansen HK. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat Genet 2015; 47:57–64 [View Article] [PubMed]
    [Google Scholar]
  31. Bragonzi A, Paroni M, Nonis A, Cramer N, Montanari S. Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence. Am J Respir Crit Care Med 2009; 180:138–145 [View Article] [PubMed]
    [Google Scholar]
  32. Hilliam Y, Moore MP, Lamont IL, Bilton D, Haworth CS. Pseudomonas aeruginosa adaptation and diversification in the non-cystic fibrosis bronchiectasis lung. Eur Respir J 2017; 49:1602108 [View Article] [PubMed]
    [Google Scholar]
  33. Gabrielaite M, Johansen HK, Molin S, Nielsen FC, Marvig RL. Gene loss and acquisition in lineages of Pseudomonas aeruginosa evolving in cystic fibrosis patient airways. mBio 2020; 11:e02359-20 [View Article] [PubMed]
    [Google Scholar]
  34. Lucchetti-Miganeh C, Redelberger D, Chambonnier G, Rechenmann F, Elsen S. Pseudomonas aeruginosa genome evolution in patients and under the hospital environment. Pathogens 2014; 3:309–340 [View Article] [PubMed]
    [Google Scholar]
  35. Bartell JA, Sommer LM, Haagensen JAJ, Loch A, Espinosa R. Evolutionary highways to persistent bacterial infection. Nat Commun 2019; 10:629 [View Article] [PubMed]
    [Google Scholar]
  36. Brown VI, Lowbury EJ. Use of an improved cetrimide agar medium and other culture methods for Pseudomonas aeruginosa. J Clin Pathol 1965; 18:752–756 [View Article] [PubMed]
    [Google Scholar]
  37. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008; 3:163–175 [View Article] [PubMed]
    [Google Scholar]
  38. Ha DG, Kuchma SL, O’Toole GA. Plate-based assay for swimming motility in Pseudomonas aeruginosa. Methods Mol Biol 2014; 1149:59–65 [View Article] [PubMed]
    [Google Scholar]
  39. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9:671–675 [View Article] [PubMed]
    [Google Scholar]
  40. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44:301–307 [PubMed]
    [Google Scholar]
  41. O’Toole GA. Microtiter dish biofilm formation assay. J Vis Exp 2011; 30:2437
    [Google Scholar]
  42. Coffey BM, Anderson GG. Biofilm formation in the 96-well microtiter plate. Methods Mol Biol 2014; 1149:631–641 [View Article] [PubMed]
    [Google Scholar]
  43. Palmer KL, Aye LM, Whiteley M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol 2007; 189:8079–8087 [View Article] [PubMed]
    [Google Scholar]
  44. Freschi L, Vincent AT, Jeukens J, Emond-Rheault JG, Kukavica-Ibrulj I. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol Evol 2019; 11:109–120 [View Article] [PubMed]
    [Google Scholar]
  45. Freschi L, Jeukens J, Kukavica-Ibrulj I, Boyle B, Dupont MJ. Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Front Microbiol 2015; 6:1036 [View Article] [PubMed]
    [Google Scholar]
  46. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  47. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  48. Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol 2019; 20:129 [View Article] [PubMed]
    [Google Scholar]
  49. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  50. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  51. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol, Research Support, US Gov’t, Non-PHS 2014; 15:524
    [Google Scholar]
  52. Rambaut A, Drummond A. FigTree version 1.4. 0 2012
    [Google Scholar]
  53. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011; 12:402 [View Article] [PubMed]
    [Google Scholar]
  54. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  55. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  56. Laing C, Buchanan C, Taboada EN, Zhang Y, Kropinski A. Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions. BMC Bioinformatics 2010; 11:461 [View Article] [PubMed]
    [Google Scholar]
  57. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article] [PubMed]
    [Google Scholar]
  58. Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol 2014; 1151:165–188 [View Article] [PubMed]
    [Google Scholar]
  59. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 2016; 34:525–527 [View Article] [PubMed]
    [Google Scholar]
  60. Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods 2017; 14:687–690 [View Article] [PubMed]
    [Google Scholar]
  61. R Development Core TeamR: A Language and Environment for Statistical Computing Version 3.4.3 Vienna, Austria: R Foundation for Statistical Computing; 2017
  62. Moore MP, Lamont IL, Williams D, Paterson S, Kukavica-Ibrulj I. Transmission, adaptation and geographical spread of the Pseudomonas aeruginosa Liverpool epidemic strain. Microb Genom 2021; 7: [View Article] [PubMed]
    [Google Scholar]
  63. La Rosa R, Johansen HK, Molin S. Adapting to the airways: metabolic requirements of Pseudomonas aeruginosa during the infection of cystic fibrosis patients. Metabolites 2019; 9:10 [View Article] [PubMed]
    [Google Scholar]
  64. Friedman L, Kolter R. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 2004; 186:4457–4465 [View Article] [PubMed]
    [Google Scholar]
  65. Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 2004; 186:4466–4475 [View Article] [PubMed]
    [Google Scholar]
  66. Matsukawa M, Greenberg EP. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 2004; 186:4449–4456 [View Article] [PubMed]
    [Google Scholar]
  67. Lee X, Fox A, Sufrin J, Henry H, Majcherczyk P. Identification of the biosynthetic gene cluster for the Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid. J Bacteriol 2010; 192:4251–4255 [View Article] [PubMed]
    [Google Scholar]
  68. Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F. Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J Bacteriol 2010; 192:1113–1121 [View Article] [PubMed]
    [Google Scholar]
  69. Romling U, Schmidt KD, Tummler B. Large chromosomal inversions occur in Pseudomonas aeruginosa clone C strains isolated from cystic fibrosis patients. FEMS Microbiol Lett 1997; 150:149–156 [View Article] [PubMed]
    [Google Scholar]
  70. Mandsberg LF, Ciofu O, Kirkby N, Christiansen LE, Poulsen HE. Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob Agents Chemother 2009; 53:2483–2491 [View Article] [PubMed]
    [Google Scholar]
  71. Greipel L, Fischer S, Klockgether J, Dorda M, Mielke S. Molecular epidemiology of mutations in antimicrobial resistance loci of Pseudomonas aeruginosa isolates from cystic fibrosis airways. Antimicrob Agents Chemother 2016; 60:6726–6734 [View Article] [PubMed]
    [Google Scholar]
  72. Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother 2001; 47:247–250 [View Article] [PubMed]
    [Google Scholar]
  73. Yang Y, Bhachech N, Bush K. Biochemical comparison of imipenem, meropenem and biapenem: permeability, binding to penicillin-binding proteins, and stability to hydrolysis by beta-lactamases. J Antimicrob Chemother 1995; 35:75–84 [View Article] [PubMed]
    [Google Scholar]
  74. Davies TA, Shang W, Bush K, Flamm RK. Affinity of doripenem and comparators to penicillin-binding proteins in Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2008; 52:1510–1512 [View Article] [PubMed]
    [Google Scholar]
  75. Bolard A, Plesiat P, Jeannot K. Mutations in Gene fusA1 as a Novel Mechanism of Aminoglycoside Resistance in Clinical Strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:01817 [View Article]
    [Google Scholar]
  76. Colque CA, Albarracin Orio AG, Feliziani S, Marvig RL, Tobares AR et al. Hypermutator Pseudomonas aeruginosa Exploits Multiple Genetic Pathways To Develop Multidrug Resistance during Long-Term Infections in the Airways of Cystic Fibrosis Patients. Antimicrob Agents Chemother 2020; 64:02119 [View Article]
    [Google Scholar]
  77. Kos VN, Deraspe M, McLaughlin RE, Whiteaker JD, Roy PH. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob Agents Chemother 2015; 59:427–436 [View Article] [PubMed]
    [Google Scholar]
  78. Qin X, Zhou C, Zerr DM, Adler A, Addetia A. Heterogeneous antimicrobial susceptibility characteristics in Pseudomonas aeruginosa isolates from cystic fibrosis patients. mSphere 2018; 3:e00615-17 [View Article] [PubMed]
    [Google Scholar]
  79. Rehman A, Jeukens J, Levesque RC, Lamont IL. Gene-gene interactions dictate ciprofloxacin resistance in pseudomonas aeruginosa and facilitate prediction of resistance phenotype from genome sequence data. Antimicrob Agents Chemother 202102696–20
    [Google Scholar]
  80. Moya B, Dotsch A, Juan C, Blazquez J, Zamorano L. β-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathog 2009; 5:e1000353 [View Article] [PubMed]
    [Google Scholar]
  81. King JD, Kocincova D, Westman EL, Lam JS. Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun 2009; 15:261–312 [View Article] [PubMed]
    [Google Scholar]
  82. Wicht DK. The reduced flavin-dependent monooxygenase SfnG converts dimethylsulfone to methanesulfinate. Arch Biochem Biophys 2016; 604:159–166 [View Article] [PubMed]
    [Google Scholar]
  83. Mastropasqua MC, Lamont I, Martin LW, Reid DW, D’Orazio M. Efficient zinc uptake is critical for the ability of Pseudomonas aeruginosa to express virulence traits and colonize the human lung. J Trace Elem Med Biol 2018; 48:74–80 [View Article] [PubMed]
    [Google Scholar]
  84. Hagins JM, Scoffield JA, Suh SJ, Silo-Suh L. Influence of RpoN on isocitrate lyase activity in Pseudomonas aeruginosa. Microbiology (Reading) 2010; 156:1201–1210 [View Article] [PubMed]
    [Google Scholar]
  85. Lin J, Cheng J, Wang Y, Shen X. The Pseudomonas Quinolone Signal (PQS): Not just for quorum sensing anymore. Front Cell Infect Microbiol 2018; 8:230 [View Article] [PubMed]
    [Google Scholar]
  86. Barth AL, Pitt TL. The high amino-acid content of sputum from cystic fibrosis patients promotes growth of auxotrophic Pseudomonas aeruginosa. J Med Microbiol 1996; 45:110–119 [View Article] [PubMed]
    [Google Scholar]
  87. Haussler S, Tummler B, Weissbrodt H, Rohde M, Steinmetz I. Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin Infect Dis 1999; 29:621–625 [View Article] [PubMed]
    [Google Scholar]
  88. Nguyen AT, O’Neill MJ, Watts AM, Robson CL, Lamont IL. Adaptation of iron homeostasis pathways by a Pseudomonas aeruginosa pyoverdine mutant in the cystic fibrosis lung. J Bacteriol 2014; 196:2265–2276 [View Article] [PubMed]
    [Google Scholar]
  89. Konings AF, Martin LW, Sharples KJ, Roddam LF, Latham R. Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect Immun 2013; 81:2697–2704 [View Article] [PubMed]
    [Google Scholar]
  90. Marvig RL, Damkiær S, Khademi SMH, Markussen TM, Molin S et al. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. MBio 2014; 5:e00966-14e00966–14 [View Article]
    [Google Scholar]
  91. Martin LW, Reid DW, Sharples KJ, Lamont IL. Pseudomonas siderophores in the sputum of patients with cystic fibrosis. Biometals 2011; 24:1059–1067 [View Article] [PubMed]
    [Google Scholar]
  92. Sousa AM, Pereira MO. Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs-A review. Pathogens 2014; 3:680–703 [View Article]
    [Google Scholar]
  93. Rau MH, Marvig RL, Ehrlich GD, Molin S, Jelsbak L. Deletion and acquisition of genomic content during early stage adaptation of Pseudomonas aeruginosa to a human host environment. Environ Microbiol 2012; 14:2200–2211 [View Article] [PubMed]
    [Google Scholar]
  94. Shen M, Zhang H, Shen W, Zou Z, Lu S. Pseudomonas aeruginosa MutL promotes large chromosomal deletions through non-homologous end joining to prevent bacteriophage predation. Nucleic Acids Res 2018; 46:4505–4514 [View Article] [PubMed]
    [Google Scholar]
  95. Cabot G, Zamorano L, Moya B, Juan C, Navas A. Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrob Agents Chemother 2016; 60:1767–1778 [View Article] [PubMed]
    [Google Scholar]
  96. Oliver A. Mutators in cystic fibrosis chronic lung infection: Prevalence, mechanisms, and consequences for antimicrobial therapy. Int J Med Microbiol 2010; 300:563–572 [View Article] [PubMed]
    [Google Scholar]
  97. Mandsberg LF, Macia MD, Bergmann KR, Christiansen LE, Alhede M. Development of antibiotic resistance and up-regulation of the antimutator gene pfpI in mutator Pseudomonas aeruginosa due to inactivation of two DNA oxidative repair genes (mutY, mutM). FEMS Microbiol Lett 2011; 324:28–37 [View Article] [PubMed]
    [Google Scholar]
  98. Kordes A, Preusse M, Willger SD, Braubach P, Jonigk D. Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung. Nat Commun 20193397 [View Article] [PubMed]
    [Google Scholar]
  99. Cornforth DM, Dees JL, Ibberson CB, Huse HK, Mathiesen IH et al. Pseudomonas aeruginosa transcriptome during human infection. Proc Natl Acad Sci U S A 2018; 115:E5125–E5134 [View Article]
    [Google Scholar]
  100. Rossi E, Falcone M, Molin S, Johansen HK. High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils genotype independent patho-phenotypes in cystic fibrosis lungs. Nat Commun 2018; 9:3459 [View Article] [PubMed]
    [Google Scholar]
  101. Tsutsumi Y, Tomita H, Tanimoto K. Identification of novel genes responsible for overexpression of ampC in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 2013; 57:5987–5993 [View Article] [PubMed]
    [Google Scholar]
  102. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2000; 44:3322–3327 [View Article] [PubMed]
    [Google Scholar]
  103. Li XZ, Plesiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337–418 [View Article] [PubMed]
    [Google Scholar]
  104. Martin LW, Robson CL, Watts AM, Gray AR, Wainwright CE. Expression of Pseudomonas aeruginosa antibiotic resistance genes varies greatly during infections in cystic fibrosis patients. Antimicrob Agents Chemother 2018; 62:e01718–01789 [View Article] [PubMed]
    [Google Scholar]
  105. Sennhauser G, Bukowska MA, Briand C, Grutter MG. Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa. J Mol Biol 2009; 389:134–145 [View Article] [PubMed]
    [Google Scholar]
  106. Li XZ, Nikaido H, Poole K. Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1995; 39:1948–1953 [View Article] [PubMed]
    [Google Scholar]
  107. Jyot J, Dasgupta N, Ramphal R. FleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J Bacteriol 2002; 184:5251–5260 [View Article] [PubMed]
    [Google Scholar]
  108. Deligianni E, Pattison S, Berrar D, Ternan NG, Haylock RW. Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiol 2010; 10:38 [View Article] [PubMed]
    [Google Scholar]
  109. Jones AK, Fulcher NB, Balzer GJ, Urbanowski ML, Pritchett CL. Activation of the Pseudomonas aeruginosa AlgU regulon through mucA mutation inhibits cyclic AMP/Vfr signaling. J Bacteriol 2010; 192:5709–5717 [View Article] [PubMed]
    [Google Scholar]
  110. Feltner JB, Wolter DJ, Pope CE, Groleau MC, Smalley NE. LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa. mBio 2016; 7:e01513-16 [View Article] [PubMed]
    [Google Scholar]
  111. Kostylev M, Kim DY, Smalley NE, Salukhe I, Greenberg EP. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc Natl Acad Sci U S A 2019; 116:7027–7032 [View Article] [PubMed]
    [Google Scholar]
  112. Azimi S, Klementiev AD, Whiteley M, Diggle SP. Bacterial quorum sensing during infection. Annu Rev Microbiol 2020; 74:201–219 [View Article] [PubMed]
    [Google Scholar]
  113. Diggle SP, Winzer K, Lazdunski A, Williams P, Camara M. Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 2002; 184:2576–2586 [View Article] [PubMed]
    [Google Scholar]
  114. Vallet-Gely I, Sharp JS, Dove SL. Local and global regulators linking anaerobiosis to cupA fimbrial gene expression in Pseudomonas aeruginosa. J Bacteriol 2007; 189:8667–8676 [View Article] [PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000681
Loading
/content/journal/mgen/10.1099/mgen.0.000681
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error