1887

Abstract

A hospital outbreak of carbapenem-resistant Enterobacterales was detected by routine surveillance. Whole genome sequencing and subsequent analysis revealed a conserved promiscuous carrying plasmid as the defining factor within this outbreak. Four different species of Enterobacterales were involved in the outbreak. ST399 accounted for 35 of all the 55 isolates. Comparative genomics analysis using publicly available ST399 genomes showed that the outbreak ST399 isolates formed a unique clade. We developed a mathematical model of pOXA-48-like plasmid transmission between host lineages and used it to estimate its conjugation rate, giving a lower bound of 0.23 conjugation events per lineage per year. Our analysis suggests that co-evolution between the pOXA-48-like plasmid and ST399 could have played a role in the outbreak. This is the first study to report carbapenem-resistant ST399 carrying blaOXA-48 as the main cause of a plasmid-borne outbreak within a hospital setting. Our findings suggest complementary roles for both plasmid conjugation and clonal expansion in the emergence of this outbreak.

Funding
This study was supported by the:
  • Wellcome Trust (Award 220422/Z/20/Z)
    • Principle Award Recipient: LiamP. Shaw
  • Rosetrees Trust and the Stoneygate Trust (Award M683)
    • Principle Award Recipient: ElitaJauneikaite
  • National Institute for Health Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford (Award NIHR200915)
    • Principle Award Recipient: AliceLedda
  • NIHR HPRU in Genomics and Enabling Data at the University of Warwick (Award NIHR200892)
    • Principle Award Recipient: XavierDidelot
  • National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Modelling Methodology at Imperial College London (Award HPRU-2012–10080)
    • Principle Award Recipient: XavierDidelot
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000675
2022-04-20
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/4/mgen000675.html?itemId=/content/journal/mgen/10.1099/mgen.0.000675&mimeType=html&fmt=ahah

References

  1. Frazão N, Sousa A, Lässig M, Gordo I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc Natl Acad Sci U S A 2019; 116:17906–17915 [View Article] [PubMed]
    [Google Scholar]
  2. MacLean RC, San Millan A. The evolution of antibiotic resistance. Science 2019; 365:1082–1083 [View Article] [PubMed]
    [Google Scholar]
  3. Mathers AJ, Stoesser N, Sheppard AE, Pankhurst L, Giess A et al. Klebsiella pneumoniae Carbapenemase (KPC)-Producing K. pneumoniae at a Single Institution: Insights into Endemicity from Whole-Genome Sequencing. Antimicrob Agents Chemother 2015; 59:1656–1663 [View Article]
    [Google Scholar]
  4. Norman A, Hansen LH, Sørensen SJ. Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 2009; 364:2275–2289 [View Article]
    [Google Scholar]
  5. Lanza VF, de Toro M, Garcillán-Barcia MP, Mora A, Blanco J et al. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences. PLoS Genet 2014; 10:e1004766. [View Article] [PubMed]
    [Google Scholar]
  6. Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A et al. Nested Russian Doll-Like Genetic Mobility Drives Rapid Dissemination of the Carbapenem Resistance Gene bla KPC. Antimicrob Agents Chemother 2016; 60:3767–3778 [View Article]
    [Google Scholar]
  7. León-Sampedro R, DelaFuente J, Díaz-Agero C, Crellen T, Musicha P et al. Dissemination routes of the carbapenem resistance plasmid poxa-48 in a hospital setting. 2020.04.20.050476 bioRxiv 2020
    [Google Scholar]
  8. Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother 2012; 56:559–562 [View Article]
    [Google Scholar]
  9. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 2012; 67:1597–1606 [View Article] [PubMed]
    [Google Scholar]
  10. Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm!. Trends Mol Med 2012; 18:263–272 [View Article] [PubMed]
    [Google Scholar]
  11. Potron A, Nordmann P, Lafeuille E, Al Maskari Z, Al Rashdi F et al. Characterization of OXA-181, a Carbapenem-Hydrolyzing Class D β-Lactamase from Klebsiella pneumoniae. Antimicrob Agents Chemother 2011; 55:4896–4899 [View Article]
    [Google Scholar]
  12. Skalova A, Chudejova K, Rotova V, Medvecky M, Studentova V et al. Molecular Characterization of OXA-48-Like-Producing Enterobacteriaceae in the Czech Republic and Evidence for Horizontal Transfer of pOXA-48-Like Plasmids. Antimicrob Agents Chemother 2017; 61:e01889-16. [View Article] [PubMed]
    [Google Scholar]
  13. Findlay J, Hopkins KL, Alvarez-Buylla A, Meunier D, Mustafa N et al. Characterization of carbapenemase-producing Enterobacteriaceae in the West Midlands region of England: 2007–14. J Antimicrob Chemother 2017dkw560 [View Article]
    [Google Scholar]
  14. Mahon BM, Brehony C, Cahill N, McGrath E, O’Connor L et al. Detection of OXA-48-like-producing Enterobacterales in Irish recreational water. Sci Total Environ 2019; 690:1–6 [View Article]
    [Google Scholar]
  15. David S, Cohen V, Reuter S, Sheppard A, Giani T. Genomic analysis of carbapenemase-encoding plasmids from klebsiella pneumoniae across europe highlights three major patterns of dissemination. bioRxiv 20192019.12.19.873935
    [Google Scholar]
  16. Hernández-García M, Pérez-Viso B, Navarro-San Francisco C, Baquero F, Morosini MI et al. Intestinal co-colonization with different carbapenemase-producing Enterobacterales isolates is not a rare event in an OXA-48 endemic area. EClinicalMedicine 2019; 15:72–79 [View Article] [PubMed]
    [Google Scholar]
  17. Pulss S, Stolle I, Stamm I, Leidner U, Heydel C et al. Multispecies and Clonal Dissemination of OXA-48 Carbapenemase in Enterobacteriaceae From Companion Animals in Germany, 2009-2016. Front Microbiol 2018; 9:1265. [View Article] [PubMed]
    [Google Scholar]
  18. Stoesser N, Batty EM, Eyre DW, Morgan M, Wyllie DH et al. Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. J Antimicrob Chemother 2013; 68:2234–2244 [View Article] [PubMed]
    [Google Scholar]
  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  20. Clausen P, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC bioinformatics 2018; 19:307 [View Article]
    [Google Scholar]
  21. Hasman H, Saputra D, Sicheritz-Ponten T, Lund O, Svendsen CA et al. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol 2014; 52:139–146 [View Article] [PubMed]
    [Google Scholar]
  22. Larsen MV, Cosentino S, Lukjancenko O, Saputra D, Rasmussen S et al. Benchmarking of Methods for Genomic Taxonomy. J Clin Microbiol 2014; 52:1529–1539 [View Article] [PubMed]
    [Google Scholar]
  23. Center for Genomic Epidemiology; 2020 http://www.genomicepidemiology.org/
  24. Rahmani A-. M et al. LastZ: An Ultra Optimized 3D Networks-on-Chip Architecture’, 2011 14th Euromicro Conference on Digital System Design; 2011
  25. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [View Article] [PubMed]
    [Google Scholar]
  26. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  27. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011; 27:2987–2993 [View Article] [PubMed]
    [Google Scholar]
  28. Analyses of Phylogenetics and Evolution [R package ape version 5.3]’ (no date) Comprehensive R Archive Network (CRAN). n.d https://CRAN.R-project.org/package=ape
  29. Reeves PR. The R Project for Statistical Computing. n.d https://www.r-project.org/
  30. Weingarten RA, Johnson RC, Conlan S, Ramsburg AM, Dekker JP et al. Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenem Resistance. mBio 2018; 9:e02011-17. [View Article] [PubMed]
    [Google Scholar]
  31. blast: Basic Local Alignment Search Tool; 2020 https://blast.ncbi.nlm.nih.gov/Blast.cgi
  32. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  33. Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article] [PubMed]
    [Google Scholar]
  34. Yang Z. Estimating the pattern of nucleotide substitution. J Mol Evol 1994; 39:105 [View Article] [PubMed]
    [Google Scholar]
  35. Zharkikh A. Estimation of evolutionary distances between nucleotide sequences. J Mol Evol 1994; 39:315––329 [View Article] [PubMed]
    [Google Scholar]
  36. Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol 2015; 11:e1004041 [View Article] [PubMed]
    [Google Scholar]
  37. Kimura M. The Neutral Theory of Molecular Evolution. In The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [View Article]
    [Google Scholar]
  38. Reeves PR, Liu B, Zhou Z, Li D, Guo D et al. Rates of mutation and host transmission for an Escherichia coli clone over 3 years. PloS one 2011; 6:e26907 [View Article] [PubMed]
    [Google Scholar]
  39. Lenski RE, Rose MR, Simpson SC, Tadler SC et al. Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations. The American Naturalist 1991; 138:1315–1341 [View Article]
    [Google Scholar]
  40. Hein J, Schierup M, Wiuf C. Gene Genealogies, Variation and Evolution: A primer in coalescent theory. USA: Oxford University Press; 2004
  41. Wakeley J. Coalescent Theory: An Introduction. Roberts Publishers; 2009
  42. Kingman JFC. The coalescent. Stochastic Processes and their Applications 1982; 13:235–248 [View Article]
    [Google Scholar]
  43. Didelot X, Croucher NJ, Bentley SD, Harris SR, Wilson DJ et al. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res 2018; 46:e134 [View Article] [PubMed]
    [Google Scholar]
  44. Clermont O, Christenson JK, Denamur E, Gordon DM et al. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 2013; 5:58–65 [View Article] [PubMed]
    [Google Scholar]
  45. Dale AP, Woodford N. Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones. J Infect 2015; 71:615–626 [View Article] [PubMed]
    [Google Scholar]
  46. Findlay J, Hopkins KL, Loy R, Doumith M, Meunier D et al. OXA-48-like carbapenemases in the UK: an analysis of isolates and cases from 2007 to 2014. J Antimicrob Chemother 2017; 72:1340–1349 [View Article] [PubMed]
    [Google Scholar]
  47. Turton JF, Doumith M, Hopkins KL, Perry C, Meunier D et al. Clonal expansion of Escherichia coli ST38 carrying a chromosomally integrated OXA-48 carbapenemase gene. J Med Microbiol 2016; 65:538–546 [View Article] [PubMed]
    [Google Scholar]
  48. Poirel L, Castanheira M, Carrër A, Rodriguez CP, Jones RN et al. OXA-163, an OXA-48-Related Class D β-Lactamase with Extended Activity Toward Expanded-Spectrum Cephalosporins. Antimicrob Agents Chemother 2011; 55:2546–2551 [View Article]
    [Google Scholar]
  49. Bonnin RA, Nordmann P, Carattoli A, Poirel L et al. Comparative genomics of IncL/M-type plasmids: evolution by acquisition of resistance genes and insertion sequences. Antimicrob Agents Chemother 2013; 57: [View Article]
    [Google Scholar]
  50. Ferretti L, Ledda A, Wiehe T, Achaz G, Ramos-Onsins SE et al. Decomposing the Site Frequency Spectrum: The Impact of Tree Topology on Neutrality Tests. Genetics 2017; 207:229–240 [View Article] [PubMed]
    [Google Scholar]
  51. Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics 1993; 133:693–709 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000675
Loading
/content/journal/mgen/10.1099/mgen.0.000675
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error