1887

Abstract

is an industrially important actinomycete whose genetic manipulation is limited by low transformation and conjugation efficiencies, low levels of recombination of introduced DNA, and difficulty in obtaining consistent sporulation. We describe the construction and application of versatile vectors for Cas9-mediated genome editing of this strain. To design spacer sequences with confidence, we derived a highly accurate genome assembly for an isolate of the type strain (ATCC 27064). This yielded a chromosome assembly (6.75 Mb) plus assemblies for pSCL4 (1795 kb) and pSCL2 (149 kb). The strain also carries pSCL1 (12 kb), but its small size resulted in only partial sequence coverage. The previously described pSCL3 (444 kb) is not present in this isolate. Using our Cas9 vectors, we cured pSCL4 with high efficiency by targeting the plasmid’s gene. Five of the resulting pSCL4-cured isolates were characterized and all showed impaired sporulation. Shotgun genome sequencing of each of these derivatives revealed large deletions at the ends of the chromosomes in all of them, and for two clones sufficient sequence data was obtained to show that the chromosome had circularized. Taken together, these data indicate that pSCL4 is essential for the structural stability of the linear chromosome.

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/N023536/1)
    • Principle Award Recipient: JasonMicklefield
  • Biotechnology and Biological Sciences Research Council (Award BB/N02351X/1)
    • Principle Award Recipient: BarrieWilkinson
  • Biotechnology and Biological Sciences Research Council (Award BBS/E/J/000PR9790)
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000669
2021-11-08
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/11/mgen000669.html?itemId=/content/journal/mgen/10.1099/mgen.0.000669&mimeType=html&fmt=ahah

References

  1. Reading C, Cole M. Clavulanic acid: a beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother 1977; 11:852–857 [View Article] [PubMed]
    [Google Scholar]
  2. World Health Organization World Health Organization Model List of Essential Medicines: 21st List 2019 Geneva: World Health Organization; 2019
    [Google Scholar]
  3. Nagarajan R, Boeck LD, Gorman M, Hamill RL, Higgens CE et al. β-Lactam antibiotics from Streptomyces. J Am Chem Soc 1971; 93:2308–2310 [View Article] [PubMed]
    [Google Scholar]
  4. Higgens CE, Kastner RE. Streptomyces clavuligerus sp. nov., a β-lactam antibiotic producer. Int J Syst Evol Microbiol 1971; 21:326–331 [View Article]
    [Google Scholar]
  5. Jensen SE. Biosynthesis of clavam metabolites. J Ind Microbiol Biotechnol 2012; 39:1407–1419 [View Article] [PubMed]
    [Google Scholar]
  6. Liras P. Holomycin, a dithiolopyrrolone compound produced by Streptomyces clavuligerus. Appl Microbiol Biotechnol 2014; 98:1023–1030 [View Article] [PubMed]
    [Google Scholar]
  7. Liras P, Martin JF. Assay methods for detection and quantification of antimicrobial metabolites produced by Streptomyces clavuligerus. Barredo J-L. ed In Microbial Processes and Products Totowa, NJ: Humana Press; 2005 pp 149–164
    [Google Scholar]
  8. Martínez-Burgo Y, Santos-Aberturas J, Rodríguez-García A, Barreales EG, Tormo JR et al. Activation of secondary metabolite gene clusters in Streptomyces clavuligerus by the PimM regulator of Streptomyces natalensis. Front Microbiol 2019; 10:580 [View Article] [PubMed]
    [Google Scholar]
  9. Álvarez-Álvarez R, Botas A, Albillos SM, Rumbero A, Martín JF et al. Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus. Microb Cell Fact 2015; 14:178 [View Article] [PubMed]
    [Google Scholar]
  10. Paradkar A. Clavulanic acid production by Streptomyces clavuligerus: biogenesis, regulation and strain improvement. J Antibiot 2013; 66:411–420 [View Article]
    [Google Scholar]
  11. Liras P, Gomez-Escribano JP, Santamarta I. Regulatory mechanisms controlling antibiotic production in Streptomyces clavuligerus. J Ind Microbiol Biotechnol 2008; 35:667 [View Article] [PubMed]
    [Google Scholar]
  12. Liras P. Biosynthesis and molecular genetics of cephamycins. Antonie Van Leeuwenhoek 1999; 75:109–124 [View Article]
    [Google Scholar]
  13. Medema MH, Trefzer A, Kovalchuk A, van den Berg M, Müller U et al. The sequence of a 1.8-Mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol 2010; 2:212–224 [View Article] [PubMed]
    [Google Scholar]
  14. Song JY, Jeong H, Yu DS, Fischbach MA, Park H-S et al. Draft genome sequence of Streptomyces clavuligerus NRRL 3585, a producer of diverse secondary metabolites. J Bacteriol 2010; 192:6317–6318 [View Article] [PubMed]
    [Google Scholar]
  15. Netolitzky DJ, Wu X, Jensen SE, Roy KL. Giant linear plasmids of β-lactam antibiotic producing Streptomyces. FEMS Microbiol Lett 1995; 131:27–34 [View Article] [PubMed]
    [Google Scholar]
  16. Wu X, Roy KL. Complete nucleotide sequence of a linear plasmid from Streptomyces clavuligerus and characterization of its RNA transcripts. J Bacteriol 1993; 175:37–52 [View Article] [PubMed]
    [Google Scholar]
  17. Hwang S, Lee N, Jeong Y, Lee Y, Kim W et al. Primary transcriptome and translatome analysis determines transcriptional and translational regulatory elements encoded in the Streptomyces clavuligerus genome. Nucleic Acids Res 2019; 47:6114–6129 [View Article] [PubMed]
    [Google Scholar]
  18. Fernández-Martínez LT, Bibb MJ. Use of the meganuclease I-SceI of Saccharomyces cerevisiae to select for gene deletions in actinomycetes. Sci Rep 2014; 4:7100 [View Article] [PubMed]
    [Google Scholar]
  19. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013; 8:2281–2308 [View Article] [PubMed]
    [Google Scholar]
  20. Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 2015; 4:1020–1029 [View Article] [PubMed]
    [Google Scholar]
  21. Cobb RE, Wang Y, Zhao H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 2015; 4:723–728 [View Article] [PubMed]
    [Google Scholar]
  22. Tong Y, Whitford CM, Blin K, Jørgensen TS, Weber T et al. CRISPR–Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes. Nat Protoc 2020; 15:2470–2502 [View Article]
    [Google Scholar]
  23. Alberti F, Corre C. Editing streptomycete genomes in the CRISPR/Cas9 age. Nat Prod Rep 2019; 36:1237–1248 [View Article] [PubMed]
    [Google Scholar]
  24. Lynch AS, Wang JC. SopB protein-mediated silencing of genes linked to the sopC locus of Escherichia coli F plasmid. Proc Natl Acad Sci USA 1995; 92:1896–1900 [View Article] [PubMed]
    [Google Scholar]
  25. Funnell BE. ParB partition proteins: complex formation and spreading at bacterial and plasmid centromeres. Front Mol Biosci 2016; 3:44 [View Article] [PubMed]
    [Google Scholar]
  26. Sanchez L, Brana AF. Cell density influences antibiotic biosynthesis in Streptomyces clavuligerus. Microbiology 1996; 142:1209–1220 [View Article] [PubMed]
    [Google Scholar]
  27. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  28. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces Genetics Norwich: John Innes Foundation; 2000
    [Google Scholar]
  29. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P et al. Artemis: sequence visualization and annotation. Bioinformatics 2000; 16:944–945 [View Article] [PubMed]
    [Google Scholar]
  30. Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG et al. ACT: the Artemis comparison tool. Bioinformatics 2005; 21:3422–3423 [View Article] [PubMed]
    [Google Scholar]
  31. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article] [PubMed]
    [Google Scholar]
  32. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010; 26:589–595 [View Article] [PubMed]
    [Google Scholar]
  33. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article]
    [Google Scholar]
  34. Gomez-Escribano JP, Castro JF, Razmilic V, Chandra G, Andrews B et al. The Streptomyces leeuwenhoekii genome: de novo sequencing and assembly in single contigs of the chromosome, circular plasmid pSLE1 and linear plasmid pSLE2. BMC Genomics 2015; 16:485 [View Article] [PubMed]
    [Google Scholar]
  35. Carver T, Bohme U, Otto TD, Parkhill J, Berriman M. BamView: viewing mapped read alignment data in the context of the reference sequence. Bioinformatics 2010; 26:676–677 [View Article] [PubMed]
    [Google Scholar]
  36. García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 2012; 28:2678–2679 [View Article] [PubMed]
    [Google Scholar]
  37. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 2016; 32:292–294 [View Article] [PubMed]
    [Google Scholar]
  38. Staden R, Beal KF, Bonfield JK. The Staden Package, 1998. Misener S, Krawetz SA. eds In Bioinformatics Methods and Protocols Totowa, NJ: Humana Press; 2000 pp 115–130
    [Google Scholar]
  39. Bonfield JK, Whitwham A. Gap5 – editing the billion fragment sequence assembly. Bioinformatics 2010; 26:1699–1703 [View Article] [PubMed]
    [Google Scholar]
  40. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  41. Santiago-Sotelo P, Ramirez-Prado JH. prfectBLAST: a platform-independent portable front end for the command terminal BLAST+ stand-alone suite. BioTechniques 2012; 53:299–300 [View Article] [PubMed]
    [Google Scholar]
  42. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  43. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article] [PubMed]
    [Google Scholar]
  44. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017; 45:W36–W41 [View Article] [PubMed]
    [Google Scholar]
  45. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article] [PubMed]
    [Google Scholar]
  46. Wu W, Leblanc SKD, Piktel J, Jensen SE, Roy KL. Prediction and functional analysis of the replication origin of the linear plasmid pSCL2 in Streptomyces clavuligerus. Can J Microbiol 2006; 52:293–300 [View Article] [PubMed]
    [Google Scholar]
  47. Álvarez-Álvarez R, Rodríguez-García A, Martínez-Burgo Y, Robles-Reglero V, Santamarta I et al. A 1.8-Mb-reduced Streptomyces clavuligerus genome: relevance for secondary metabolism and differentiation. Appl Microbiol Biotechnol 2014; 98:2183–2195 [View Article] [PubMed]
    [Google Scholar]
  48. Charusanti P, Fong NL, Nagarajan H, Pereira AR, Li HJ et al. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. PLoS One 2012; 7:e33727 [View Article] [PubMed]
    [Google Scholar]
  49. Rudolph MM, Vockenhuber M-. P, Suess B. Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology 2013; 159:1416–1422 [View Article] [PubMed]
    [Google Scholar]
  50. Rudolph MM, Vockenhuber M-P, Suess B. Conditional control of gene expression by synthetic riboswitches in Streptomyces coelicolor. Methods Enzymol 2015; 550:283–299
    [Google Scholar]
  51. Wu H, Qu S, Lu C, Zheng H, Zhou X et al. Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008. BMC Genomics 2012; 13:337 [View Article] [PubMed]
    [Google Scholar]
  52. Weaver D, Karoonuthaisiri N, Tsai H-H, Huang C-H, Ho M-L et al. Genome plasticity in Streptomyces: identification of 1 Mb TIRs in the S. coelicolor A3(2) chromosome. Mol Microbiol 2004; 51:1535–1550 [View Article] [PubMed]
    [Google Scholar]
  53. Cao G, Zhong C, Zong G, Fu J, Liu Z et al. Complete genome sequence of Streptomyces clavuligerus F613-1, an industrial producer of clavulanic acid. Genome Announc 2016; 4:e01020-16 [View Article] [PubMed]
    [Google Scholar]
  54. Ye S, Enghiad B, Zhao H, Takano E. Fine-tuning the regulation of Cas9 expression levels for efficient CRISPR-Cas9 mediated recombination in Streptomyces. J Ind Microbiol Biotechnol 2020; 47:413–423 [View Article] [PubMed]
    [Google Scholar]
  55. Nindita Y, Cao Z, Yang Y, Arakawa K, Shiwa Y et al. The tap-tpg gene pair on the linear plasmid functions to maintain a linear topology of the chromosome in Streptomyces rochei. Mol Microbiol 2015; 95:846–858 [View Article] [PubMed]
    [Google Scholar]
  56. Ramijan K, Zhang Z, van Wezel GP, Claessen D. Genome rearrangements and megaplasmid loss in the filamentous bacterium Kitasatospora viridifaciens are associated with protoplast formation and regeneration. Antonie van Leeuwenhoek 2020; 113:825–837 [View Article] [PubMed]
    [Google Scholar]
  57. Qin Z, Cohen SN. Replication at the telomeres of the Streptomyces linear plasmid pSLA2. Mol Microbiol 1998; 28:893–903 [View Article] [PubMed]
    [Google Scholar]
  58. Bao K, Cohen SN. Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. Genes Dev 2003; 17:774–785 [View Article] [PubMed]
    [Google Scholar]
  59. Nindita Y, Cao Z, Fauzi AA, Teshima A, Misaki Y et al. The genome sequence of Streptomyces rochei 7434AN4, which carries a linear chromosome and three characteristic linear plasmids. Sci Rep 2019; 9:10973 [View Article] [PubMed]
    [Google Scholar]
  60. Yang C-C, Sun W-C, Wang W-Y, Huang C-H, Lu F-S et al. Mutational analysis of the terminal protein Tpg of streptomyces chromosomes: identification of the deoxynucleotidylation site. PLoS One 2013; 8:e56322 [View Article] [PubMed]
    [Google Scholar]
  61. Gomez-Escribano JP, Martín JF, Hesketh A, Bibb MJ, Liras P. Streptomyces clavuligerus relA-null mutants overproduce clavulanic acid and cephamycin C: negative regulation of secondary metabolism by (p)ppGpp. Microbiology 2008; 154:744–755 [View Article] [PubMed]
    [Google Scholar]
  62. Pablo GJ, Paloma L, Agustín P, Martín Juan F. An rplKΔ29‐PALG‐32 mutation leads to reduced expression of the regulatory genes ccaR and claR and very low transcription of the ceaS2 gene for clavulanic acid biosynthesis in Streptomyces clavuligerus. Mol Microbiol 2006; 61:758–770 [View Article] [PubMed]
    [Google Scholar]
  63. Álvarez-Álvarez R, Martínez-Burgo Y, Rodríguez-García A, Liras P. Discovering the potential of S. clavuligerus for bioactive compound production: cross-talk between the chromosome and the pSCL4 megaplasmid. BMC Genomics 2017; 18:907 [View Article] [PubMed]
    [Google Scholar]
  64. Pérez-Llarena FJ, Liras P, Rodríguez-García A, Martín JF. A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both beta-lactam compounds. J Bacteriol 1997; 179:2053–2059 [View Article] [PubMed]
    [Google Scholar]
  65. Alting-Mees MA, Short JM. pBluescript II: gene mapping vectors. Nucleic Acids Res 1989; 17:9494 [View Article] [PubMed]
    [Google Scholar]
  66. Bibb MJ, White J, Ward JM, Janssen GR. The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 1994; 14:533–545 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000669
Loading
/content/journal/mgen/10.1099/mgen.0.000669
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error