1887

Abstract

Members of the genus are soil bacteria that often form nitrogen-fixing symbioses with legumes. Most characterised spp. genomes are ~8 Mb in size and harbour extensive pangenomes including large integrative and conjugative elements (ICEs) carrying genes required for symbiosis (ICESyms). Here, we document and compare the conjugative mobilome of 41 complete genomes. We delineated 56 ICEs and 24 integrative and mobilizable elements (IMEs) collectively occupying 16 distinct integration sites, along with 24 plasmids. We also demonstrated horizontal transfer of the largest (853,775 bp) documented ICE, the tripartite ICEspSym. The conjugation systems of all identified ICEs and several plasmids were related to those of the paradigm ICESym ICESym, with each carrying conserved genes for conjugative pilus formation (), excision (), DNA transfer () and regulation (). ICESyms have likely evolved from a common ancestor, despite occupying a variety of distinct integration sites and specifying symbiosis with diverse legumes. We found extensive evidence for recombination between ICEs and particularly ICESyms, which all uniquely lack the conjugation entry-exclusion factor gene . Frequent duplication, replacement and pseudogenization of genes for quorum-sensing-mediated activation and antiactivation of ICE transfer suggests ICE transfer regulation is constantly evolving. Pangenome-wide association analysis of the ICE identified genes potentially involved in symbiosis, rhizosphere colonisation and/or adaptation to distinct legume hosts. In summary, the genus has accumulated a large and dynamic pangenome that evolves through ongoing horizontal gene transfer of large conjugative elements related to ICESym.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000657
2021-10-04
2021-11-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/10/mgen000657.html?itemId=/content/journal/mgen/10.1099/mgen.0.000657&mimeType=html&fmt=ahah

References

  1. Mirkin BG, Fenner TI, Galperin MY, Koonin EV. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol 2003; 3:2 [View Article] [PubMed]
    [Google Scholar]
  2. Kunin V, Goldovsky L, Darzentas N, Ouzounis CA. The net of life: Reconstructing the microbial phylogenetic network. Genome Res 2005; 15:954–959 [View Article] [PubMed]
    [Google Scholar]
  3. Dagan T, Martin W. Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci U S A 2007; 104:870–875 [View Article] [PubMed]
    [Google Scholar]
  4. Halary S, Leigh JW, Cheaib B, Lopez P, Bapteste E. Network analyses structure genetic diversity in independent genetic worlds. Proc Natl Acad Sci U S A 2010; 107:127–132 [View Article] [PubMed]
    [Google Scholar]
  5. Kloesges T, Popa O, Martin W, Dagan T. Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. Mol Biol Evol 2011; 28:1057–1074 [View Article] [PubMed]
    [Google Scholar]
  6. Caro-Quintero A, Konstantinidis KT. Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria. ISME J 2015; 9:958–967 [View Article] [PubMed]
    [Google Scholar]
  7. Fondi M, Karkman A, Tamminen MV, Bosi E, Virta M et al. “Every gene is everywhere but the environment selects”: global geolocalization of gene sharing in environmental samples through network analysis. Genome Biol Evol 2016; 8:1388–1400 [View Article] [PubMed]
    [Google Scholar]
  8. Lawrence JG. Gene transfer in bacteria: Speciation without species?. Theor Popul Biol 2002; 61:449–460 [View Article] [PubMed]
    [Google Scholar]
  9. Guglielmini J, Quintais L, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. The repertoire of ice in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet 2011; 7:e1002222 [View Article]
    [Google Scholar]
  10. Wozniak RAF, Waldor MK. Integrative and conjugative elements: Mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 2010; 8:552–563 [View Article] [PubMed]
    [Google Scholar]
  11. Johnson CM, Grossman AD. Integrative and conjugative elements (ices): What they do and how they work. Annu Rev Genet 2015; 49:577–601 [View Article] [PubMed]
    [Google Scholar]
  12. Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512–537 [View Article] [PubMed]
    [Google Scholar]
  13. Peters SE, Hobman JL, Strike P, Ritchie DA. Novel mercury resistance determinants carried by INCJ plasmids PMERPH and r391. Mol Gen Genet 1991; 228:294–299 [View Article] [PubMed]
    [Google Scholar]
  14. Rauch PJ, De Vos WM. Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J Bacteriol 1992; 174:1280–1287 [View Article] [PubMed]
    [Google Scholar]
  15. Ravatn R, Studer S, Springael D, Zehnder AJ, van der Meer JR. Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida F1 of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. Strain B13. J Bacteriol 1998; 180:4360–4369 [View Article] [PubMed]
    [Google Scholar]
  16. Beaber JW, Hochhut B, Waldor MK. Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J Bacteriol 2002; 184:4259–4269 [View Article] [PubMed]
    [Google Scholar]
  17. Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 2002; 416:740–743 [View Article] [PubMed]
    [Google Scholar]
  18. Burrus V, Marrero J, Waldor MK. The current ICE age: Biology and evolution of sxt-related integrating conjugative elements. Plasmid 2006; 55:173–183 [View Article] [PubMed]
    [Google Scholar]
  19. Sullivan JT, Ronson CW. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci U S A 1998; 95:5145–5149 [View Article] [PubMed]
    [Google Scholar]
  20. Dimopoulou ID, Kartali SI, Harding RM, Peto TEA, Crook DW. Diversity of antibiotic resistance integrative and conjugative elements among haemophili. J Med Microbiol 2007; 56:838–846 [View Article] [PubMed]
    [Google Scholar]
  21. Heather Z, Holden MTG, Steward KF, Parkhill J, Song L et al. A novel streptococcal integrative conjugative element involved in iron acquisition. Mol Microbiol 2008; 70:1274–1292 [View Article] [PubMed]
    [Google Scholar]
  22. Kung VL, Ozer EA, Hauser AR. The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2010; 74:621–641 [View Article] [PubMed]
    [Google Scholar]
  23. Colombi E, Straub C, Künzel S, Templeton MD, McCann HC et al. Evolution of copper resistance in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids. Environ Microbiol 2017; 19:819–832 [View Article] [PubMed]
    [Google Scholar]
  24. Guédon G, Libante V, Coluzzi C, Payot S, Leblond-Bourget N. The obscure world of integrative and mobilizable elements, highly widespread elements that pirate bacterial conjugative systems. Genes (Basel) 2017; 8:337 [View Article]
    [Google Scholar]
  25. Laranjo M, Alexandre A, Oliveira S. Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 2014; 169:2–17 [View Article] [PubMed]
    [Google Scholar]
  26. Haskett TL, Terpolilli JJ, Bekuma A, O’Hara GW, Sullivan JT et al. Assembly and transfer of tripartite integrative and conjugative genetic elements. Proc Natl Acad Sci U S A 2016; 113:12268–12273 [View Article] [PubMed]
    [Google Scholar]
  27. Greenlon A, Chang PL, Damtew ZM, Muleta A, Carrasquilla-Garcia N et al. Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria. Proc Natl Acad Sci U S A 2019; 116:15200–15209 [View Article] [PubMed]
    [Google Scholar]
  28. Perry BJ, Sullivan JT, Colombi E, Murphy RJT, Ramsay JP et al. Symbiosis islands of loteae-nodulating Mesorhizobium comprise three radiating lineages with concordant nod gene complements and nodulation host-range groupings. Microb Genom 2020; 6: [View Article] [PubMed]
    [Google Scholar]
  29. Wang X, Luo Y, Liu D, Wang J, Wei S et al. Complete genome sequence of the Robinia pseudoacacia L. symbiont Mesorhizobium amorphae CCNWGS0123. Stand in Genomic Sci 2018; 13:18 [View Article]
    [Google Scholar]
  30. Hill Y, Colombi E, Bonello E, Haskett T, Ramsay J et al. Evolution of diverse effective N2-fixing microsymbionts of Cicer arietinum following horizontal transfer of the Mesorhizobium ciceri CC1192 symbiosis integrative and conjugative element. Appl Environ Microbiol 2020 [View Article] [PubMed]
    [Google Scholar]
  31. Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW. Nodulating strains of rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci U S A 1995; 92:8985–8989 [View Article] [PubMed]
    [Google Scholar]
  32. Ramsay JP, Sullivan JT, Stuart GS, Lamont IL, Ronson CW. Excision and transfer of the Mesorhizobium loti R7A symbiosis island requires an integrase INTS, a novel recombination directionality factor RDFS, and a putative relaxase RLXS. Mol Microbiol 2006; 62:723–734 [View Article] [PubMed]
    [Google Scholar]
  33. Ramsay JP, Sullivan JT, Jambari N, Ortori CA, Heeb S et al. A LuxRI-family regulatory system controls excision and transfer of the Mesorhizobium loti strain R7A symbiosis island by activating expression of two conserved hypothetical genes. Mol Microbiol 2009; 73:1141–1155 [View Article] [PubMed]
    [Google Scholar]
  34. Ramsay JP, Major AS, Komarovsky VM, Sullivan JT, Dy RL et al. A widely conserved molecular switch controls quorum sensing and symbiosis island transfer in Mesorhizobium loti through expression of a novel antiactivator. Mol Microbiol 2013; 87:1–13 [View Article] [PubMed]
    [Google Scholar]
  35. Ramsay JP, Tester LGL, Major AS, Sullivan JT, Edgar CD et al. Ribosomal frameshifting and dual-target antiactivation restrict quorum-sensing-activated transfer of a mobile genetic element. Proc Natl Acad Sci U S A 2015; 112:4104–4109 [View Article] [PubMed]
    [Google Scholar]
  36. Verdonk CJ, Sullivan JT, Williman KM, Nicholson L, Bastholm TR et al. Delineation of the integrase-attachment and origin-of-transfer regions of the symbiosis island ICEMlSymR7A. Plasmid 2019; 104:102416 [View Article] [PubMed]
    [Google Scholar]
  37. Haskett TL, Terpolilli JJ, Ramachandran VK, Verdonk CJ, Poole PS et al. Sequential induction of three recombination directionality factors directs assembly of tripartite integrative and conjugative elements. PLoS Genet 2018; 14:e1007292 [View Article] [PubMed]
    [Google Scholar]
  38. Toussaint A, Merlin C, Monchy S, Benotmane MA, Leplae R et al. The biphenyl- and 4-chlorobiphenyl-catabolic transposon Tn4371, a member of a new family of genomic islands related to IncP and Ti plasmids. Appl Environ Microbiol 2003; 69:4837–4845 [View Article] [PubMed]
    [Google Scholar]
  39. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  40. Li H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  41. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article] [PubMed]
    [Google Scholar]
  42. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article]
    [Google Scholar]
  43. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA et al. Circlator: Automated circularization of genome assemblies using long sequencing reads. Genome Biol 2015; 16:294 [View Article] [PubMed]
    [Google Scholar]
  44. Song L, Florea L, Langmead B. Lighter: fast and memory-efficient sequencing error correction without counting. Genome Biol 2014; 15:509 [View Article] [PubMed]
    [Google Scholar]
  45. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. Spades: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  46. Prokchorchik M, Pandey A, Moon H, Kim W, Jeon H et al. Host adaptation and microbial competition drive Ralstonia solanacearum phylotype I evolution in the Republic of Korea. Microb Genom 2020; 6:e000461 [View Article]
    [Google Scholar]
  47. Seemann T. PROKKA: Rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  48. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 2011; 12:124 [View Article] [PubMed]
    [Google Scholar]
  49. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  50. Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  51. Schliep KP. PHANGORN: Phylogenetic analysis in R. Bioinformatics 2011; 27:592–593 [View Article] [PubMed]
    [Google Scholar]
  52. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90k prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:1–8
    [Google Scholar]
  53. de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852–1863 [View Article] [PubMed]
    [Google Scholar]
  54. Eddy SR. Accelerated profile HMM searches. PLOS Comp Biol 2011; 7:10
    [Google Scholar]
  55. Abby SS, Cury J, Guglielmini J, Néron B, Touchon M et al. Identification of protein secretion systems in bacterial genomes. Sci Rep 2016; 6:1–14
    [Google Scholar]
  56. Francia MV, Varsaki A, Garcillán-Barcia MP, Latorre A, Drainas C et al. A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev 2004; 28:79–100 [View Article] [PubMed]
    [Google Scholar]
  57. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local Alignment Search Tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  58. Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD et al. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 2002; 184:3086–3095 [View Article] [PubMed]
    [Google Scholar]
  59. Reeve W, Sullivan J, Ronson C, Tian R, Bräu L et al. Genome sequence of the Lotus corniculatus microsymbiont Mesorhizobium loti strain R88B. Stand in Genomic Sci 2014; 9:3 [View Article]
    [Google Scholar]
  60. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–21 [View Article]
    [Google Scholar]
  61. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  62. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28:1647–1649 [View Article] [PubMed]
    [Google Scholar]
  63. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of Phyml 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  64. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006; 23:254–267 [View Article] [PubMed]
    [Google Scholar]
  65. Didelot X, Wilson DJ. Clonalframeml: Efficient inference of recombination in whole bacterial genomes. PLOS Comp Biol 2015; 11:e1004041
    [Google Scholar]
  66. Wheeler TJ, Eddy SR. NHMMER: DNA homology search with profile hmms. Bioinformatics 2013; 29:2487–2489 [View Article] [PubMed]
    [Google Scholar]
  67. Sullivan JT, Brown SD, Ronson CW. The NifA-RpoN regulon of Mesorhizobium loti strain R7A and its symbiotic activation by a novel LacI/GalR-family regulator. PLoS One 2013; 8:e53762 [View Article] [PubMed]
    [Google Scholar]
  68. Domazet-Lošo M, Haubold B. Alignment-free detection of local similarity among viral and bacterial genomes. Bioinformatics 2011; 27:1466–1472 [View Article] [PubMed]
    [Google Scholar]
  69. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13:2498–2504 [View Article] [PubMed]
    [Google Scholar]
  70. Paradis E, Schliep K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in r. Bioinformatics 2019; 35:526–528 [View Article] [PubMed]
    [Google Scholar]
  71. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. Eggnog 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article]
    [Google Scholar]
  72. Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with scoary. Genome Biol 2016; 17:238 [View Article] [PubMed]
    [Google Scholar]
  73. van Heel AJ, de Jong A, Song C, Viel JH, Kok J et al. BAGEL4: A user-friendly web server to thoroughly mine ripps and bacteriocins. Nucleic Acids Res 2018; 46:W278–W281 [View Article]
    [Google Scholar]
  74. Biswas A, Staals RHJ, Morales SE, Fineran PC, Brown CM. CRISPRDetect: A flexible algorithm to define CRISPR arrays. BMC Genomics 2016; 17:356 [View Article] [PubMed]
    [Google Scholar]
  75. Bekuma AA, Terpolilli JJ, Tiwari RP, O’Hara G, Howieson J et al. Biserrula pelecinus L. is a promising forage legume for the central Ethiopian highlands. Grass Forage Sci 2021; 00:1–11
    [Google Scholar]
  76. Garcillán-Barcia MP, Francia MV, de la Cruz F. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 2009; 33:657–687 [View Article] [PubMed]
    [Google Scholar]
  77. Li PL, Hwang I, Miyagi H, True H, Farrand SK. Essential components of the ti plasmid TRB system, a type IV macromolecular transporter. J Bacteriol 1999; 181:5033–5041 [View Article] [PubMed]
    [Google Scholar]
  78. Li PL, Everhart DM, Farrand SK. Genetic and sequence analysis of the ptic58 Trb locus, encoding a mating-pair formation system related to members of the type IV secretion family. J Bacteriol 1998; 180:6164–6172 [View Article] [PubMed]
    [Google Scholar]
  79. Cho H, Winans SC. TraA, TraC and TraD autorepress two divergent quorum-regulated promoters near the transfer origin of the Ti plasmid of Agrobacterium tumefaciens. Mol Microbiol 2007; 63:1769–1782 [View Article] [PubMed]
    [Google Scholar]
  80. Carlton TM, Sullivan JT, Stuart GS, Hutt K, Lamont IL et al. Ferrichrome utilization in a mesorhizobial population: Microevolution of a three-locus system. Environ Microbiol 2007; 9:2923–2932 [View Article] [PubMed]
    [Google Scholar]
  81. Haase J, Kalkum M, Lanka E. Trbk, a small cytoplasmic membrane lipoprotein, functions in entry exclusion of the INCP alpha plasmid rp4. J Bacteriol 1996; 178:6720–6729 [View Article] [PubMed]
    [Google Scholar]
  82. Bourdès A, Rudder S, East AK, Poole PS. Mining the Sinorhizobium meliloti transportome to develop fret biosensors for sugars, dicarboxylates and cyclic polyols. PLoS One 2012; 7:e43578 [View Article] [PubMed]
    [Google Scholar]
  83. Marchetti M, Capela D, Poincloux R, Benmeradi N, Auriac M-C et al. Queuosine biosynthesis is required for Sinorhizobium meliloti-induced cytoskeletal modifications on HeLa cells and symbiosis with Medicago truncatula. PLoS One 2013; 8:e56043 [View Article]
    [Google Scholar]
  84. Ronson CW, Lyttleton P, Robertson JG. C(4)-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens. Proc Natl Acad Sci U S A 1981; 78:4284–4288 [View Article] [PubMed]
    [Google Scholar]
  85. Boesten B, Batut J, Boistard P. DctBD-dependent and -independent expression of the Sinorhizobium (Rhizobium) meliloti C4-dicarboxylate transport gene (dctA) during symbiosis. MPMI 1998; 11:878–886 [View Article]
    [Google Scholar]
  86. Zehner S, Schober G, Wenzel M, Lang K, Göttfert M. Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated TTS box promoter. Mol Plant Microbe Interact 2008; 21:1087–1093 [View Article] [PubMed]
    [Google Scholar]
  87. Bendtsen JD, Kiemer L, Fausbøll A, Brunak S. Non-classical protein secretion in bacteria. BMC Microbiol 2005; 5:1–13
    [Google Scholar]
  88. Sugawara M, Takahashi S, Umehara Y, Iwano H, Tsurumaru H et al. Variation in bradyrhizobial NOPP effector determines symbiotic incompatibility with Rj2-soybeans via effector-triggered immunity. Nat Commun 2018; 9:1–12
    [Google Scholar]
  89. Cianciotto NP, White RC. Expanding role of type II secretion in bacterial pathogenesis and beyond. Infect Immun 2017; 85: [View Article]
    [Google Scholar]
  90. Burrus V, Waldor MK. Formation of SXT Tandem arrays and SXT-R391 hybrids. J Bacteriol 2004; 186:2636–2645 [View Article] [PubMed]
    [Google Scholar]
  91. Wozniak RA, Fouts DE, Spagnoletti M, Colombo MM, Ceccarelli D et al. Comparative ICE genomics: Insights into the evolution of the sxt/r391 family of ices. PLOS Genet 2009; 5:12
    [Google Scholar]
  92. Spagnoletti M, Ceccarelli D, Rieux A, Fondi M, Taviani E et al. Acquisition and evolution of SXT-R391 integrative conjugative elements in the seventh-pandemic Vibrio cholerae lineage. mBio 2AD; 5:e01356-01314
    [Google Scholar]
  93. Bryant D, Moulton V. Neighbor-net: An agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 2004; 21:255–265 [View Article] [PubMed]
    [Google Scholar]
  94. Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the presence of recombination. Genetics 2006; 172:2665–2681 [View Article] [PubMed]
    [Google Scholar]
  95. Kuykendall LD, Shao JY, Hartung JS. Ca. Liberibacter asiaticus” proteins orthologous with pSymA-encoded proteins of Sinorhizobium meliloti: hypothetical roles in plant host interaction. PLoS One 2012; 7:e38725 [View Article]
    [Google Scholar]
  96. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015; 13:722–736 [View Article] [PubMed]
    [Google Scholar]
  97. Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 2017; 37:67–78 [View Article] [PubMed]
    [Google Scholar]
  98. Biswas A, Gagnon JN, Brouns SJJ, Fineran PC, Brown CM. CRISPRTarget: Bioinformatic prediction and analysis of CRRNA targets. RNA Biol 2013; 10:817–827 [View Article] [PubMed]
    [Google Scholar]
  99. Li X, Wang H, Tong W, Feng L, Wang L et al. Exploring the evolutionary dynamics of Rhizobium plasmids through bipartite network analysis. Environ Microbiol 2020; 22:934–951 [View Article] [PubMed]
    [Google Scholar]
  100. Cury J, Oliveira PH, de la Cruz F, Rocha EPC. Host range and genetic plasticity explain the coexistence of integrative and extrachromosomal mobile genetic elements. Mol Biol Evol 2018; 35:2230–2239 [View Article] [PubMed]
    [Google Scholar]
  101. Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 2005; 3:711–721 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000657
Loading
/content/journal/mgen/10.1099/mgen.0.000657
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error