1887

Abstract

Infection of Mel in imparts two signature features that enable its application for biocontrol of dengue. First, the susceptibility of mosquitoes to viruses such as dengue and Zika is reduced. Second, a reproductive manipulation is caused that enables Mel introgression into wild-type mosquito populations. The long-term success of this method relies, in part, on evolution of the Mel genome not compromising the critical features that make it an attractive biocontrol tool. This study compared the Mel genome at the time of initial releases and 1–7 years post-release in Cairns, Australia. Our results show the Mel genome remains highly conserved up to 7 years post-release in gene sequence, content, synteny and structure. This work suggests the Mel genome is stable in its new mosquito host and, therefore, provides reassurance on the potential for Mel to deliver long-term public-health impacts.

Funding
This study was supported by the:
  • Australian Government Research Training Program
    • Principle Award Recipient: KimberleyDainty
  • Wellcome Trust (Award 212914/Z/18/B)
    • Principle Award Recipient: ScottO'Neill
  • National Health and Medical Research Council (Award 1132412)
    • Principle Award Recipient: O'NeillScott L.SimmonsCameron P.
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000641
2021-09-01
2021-09-16
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/9/mgen000641.html?itemId=/content/journal/mgen/10.1099/mgen.0.000641&mimeType=html&fmt=ahah

References

  1. Pang T, Mak TK, Gubler DJ. Prevention and control of dengue – the light at the end of the tunnel. Lancet Infect Dis 2017; 17:e79–e87 [View Article]
    [Google Scholar]
  2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW et al. The global distribution and burden of dengue. Nature 2013; 496:504–507 [View Article] [PubMed]
    [Google Scholar]
  3. Mayer SV, Tesh RB, Vasilakis N. The emergence of arthropod-borne viral diseases: a global prospective on dengue, chikungunya and zika fevers. Acta Trop 2017; 166:155–163 [View Article] [PubMed]
    [Google Scholar]
  4. Bonizzoni M, Gasperi G, Chen X, James AA. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 2013; 29:460–468 [View Article] [PubMed]
    [Google Scholar]
  5. Weinert LA, Araujo EV, Ahmed MZ, Welch JJ. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc Biol Sci 2015; 282:20150249 [View Article]
    [Google Scholar]
  6. Zug R, Hammerstein P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 2012; 7:e38544 [View Article] [PubMed]
    [Google Scholar]
  7. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. How many species are infected with Wolbachia? – a statistical analysis of current data. FEMS Microbiol Lett 2008; 281:215–220 [View Article] [PubMed]
    [Google Scholar]
  8. Dobson SL, Fox CW, Jiggins FM. The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc Biol Sci 2002; 269:437–445 [View Article]
    [Google Scholar]
  9. Serbus LR, Casper-Lindley C, Landmann F, Sullivan W. The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet 2008; 42:683–707 [View Article] [PubMed]
    [Google Scholar]
  10. Fraser JE, De Bruyne JT, Iturbe-Ormaetxe I, Stepnell J, Burns RL et al. Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog 2017; 13:e1006751 [View Article]
    [Google Scholar]
  11. Hedges LM, Brownlie JC, O’Neill SL, Johnson KN. Wolbachia and virus protection in insects. Science 2008; 322:702 [View Article] [PubMed]
    [Google Scholar]
  12. Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 2008; 6:e1000002 [View Article]
    [Google Scholar]
  13. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 2011; 476:450–453 [View Article] [PubMed]
    [Google Scholar]
  14. Ant TH, Herd CS, Geoghegan V, Hoffmann AA, Sinkins SP. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog 2018; 14:e1006815 [View Article] [PubMed]
    [Google Scholar]
  15. Aliota MT, Walker EC, Yepes AU, Velez ID, Christensen BM et al. The wMel strain of Wolbachia reduces transmission of Chikungunya virus in Aedes aegypti. PLoS Negl Trop Dis 2016; 10:e0004677
    [Google Scholar]
  16. Aliota MT, Peinado SA, Velez ID, Osorio JE. The wMel strain of Wolbachia reduces transmission of Zika virus by Aedes aegypti. Sci Rep 2016; 6:28792
    [Google Scholar]
  17. van den Hurk AF, Hall-Mendelin S, Pyke AT, Frentiu FD, McElroy K et al. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis 2012; 6:e1892 [View Article]
    [Google Scholar]
  18. Carrington LB, Tran BCN, Le NTH, Luong TTH, Nguyen TT et al. Field- and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes. Proc Natl Acad Sci USA 2018; 115:361–366 [View Article]
    [Google Scholar]
  19. Dutra HLC, Rocha MN, Dias FBS, Mansur SB, Caragata EP et al. Wolbachia blocks currently circulating zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe 2016; 19:771–774 [View Article] [PubMed]
    [Google Scholar]
  20. Rocha MN, Duarte MM, Mansur SB, Silva BDME, Pereira TN et al. Pluripotency of Wolbachia against arboviruses: the case of yellow fever. Gates Open Res 2019; 3:161 [View Article] [PubMed]
    [Google Scholar]
  21. Ant TH, Sinkins SP. A Wolbachia triple-strain infection generates self-incompatibility in Aedes albopictus and transmission instability in Aedes aegypti. Parasit Vectors 2018; 11:295 [View Article] [PubMed]
    [Google Scholar]
  22. Tan CH, Wong PJ, Li MI, Yang H, Ng LC et al. wMel limits zika and chikungunya virus infection in a Singapore Wolbachia-introgressed Ae. aegypti strain, wMel-Sg. PLoS Negl Trop Dis 2017; 11:e0005496 [View Article]
    [Google Scholar]
  23. Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, Phillips BL, Billington K et al. Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations. PLoS Negl Trop Dis 2014; 8:e3115 [View Article]
    [Google Scholar]
  24. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011; 476:454–457 [View Article] [PubMed]
    [Google Scholar]
  25. Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT et al. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl Trop Dis 2014; 8:e2688 [View Article]
    [Google Scholar]
  26. Ryan PA, Turley AP, Wilson G, Hurst TP, Retzki K et al. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res 2019; 3:1547 [View Article] [PubMed]
    [Google Scholar]
  27. O’Neill SL, Ryan PA, Turley AP, Wilson G, Retzki K et al. Scaled deployment of Wolbachia to protect the community from dengue and other Aedes transmitted arboviruses. Gates Open Res 2018; 2:36 [View Article] [PubMed]
    [Google Scholar]
  28. Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2004; 2:e69 [View Article] [PubMed]
    [Google Scholar]
  29. Huang B, Yang Q, Hoffmann AA, Ritchie SA, van den Hurk AF et al. Wolbachia genome stability and mtDNA variants in Aedes aegypti field populations eight years after release. iScience 2020; 23:101572 [View Article]
    [Google Scholar]
  30. Woolfit M, Iturbe-Ormaetxe I, Brownlie JC, Walker T, Riegler M et al. Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol Evol 2013; 5:2189–2204 [View Article] [PubMed]
    [Google Scholar]
  31. Kent BN, Bordenstein SR. Phage WO of Wolbachia: lambda of the endosymbiont world. Trends Microbiol 2010; 18:173–181 [View Article] [PubMed]
    [Google Scholar]
  32. Lindsey ARI, Rice DW, Bordenstein SR, Brooks AW, Bordenstein SR et al. Evolutionary genetics of cytoplasmic incompatibility genes CIFA and CIFB in prophage wo of Wolbachia. Genome Biol Evol 2018; 10:434–451 [View Article] [PubMed]
    [Google Scholar]
  33. LePage DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JI et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 2017; 543:243–247 [View Article] [PubMed]
    [Google Scholar]
  34. Beckmann JF, Ronau JA, Hochstrasser M. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat Microbiol 2017; 2:17007 [View Article] [PubMed]
    [Google Scholar]
  35. Mira A, Moran NA. Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microb Ecol 2002; 44:137–143 [View Article]
    [Google Scholar]
  36. Wernegreen JJ. Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 2002; 3:850–861 [View Article] [PubMed]
    [Google Scholar]
  37. Moran NA. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA 1996; 93:2873–2878 [View Article]
    [Google Scholar]
  38. Richardson MF, Weinert LA, Welch JJ, Linheiro RS, Magwire MM et al. Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster. PLoS Genet 2012; 8:e1003129 [View Article]
    [Google Scholar]
  39. Early AM, Clark AG. Monophyly of Wolbachia pipientis genomes within Drosophila melanogaster: geographic structuring, titre variation and host effects across five populations. Mol Ecol 2013; 22:5765–5778 [View Article] [PubMed]
    [Google Scholar]
  40. Apostol BL, Black WC, Miller BR, Reiter P, Beaty BJ. Estimation of the number of full sibling families at an oviposition site using RAPD-PCR markers: applications to the mosquito Aedes aegypti. Theor Appl Genet 1993; 86:991–1000 [View Article] [PubMed]
    [Google Scholar]
  41. Rašić G, Filipović I, Weeks AR, Hoffmann AA. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics 2014; 15:275 [View Article] [PubMed]
    [Google Scholar]
  42. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom 2017; 3:e000132 [View Article]
    [Google Scholar]
  43. Chu J, Sadeghi S, Raymond A, Jackman SD, Nip KM et al. BioBloom tools: fast, accurate and memory-efficient host species sequence screening using bloom filters. Bioinformatics 2014; 30:3402–3404 [View Article] [PubMed]
    [Google Scholar]
  44. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  45. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011; 27:2987–2993 [View Article] [PubMed]
    [Google Scholar]
  46. Overmars L, van Hijum SAFT, Siezen RJ, Francke C. CiVi: circular genome visualization with unique features to analyze sequence elements. Bioinformatics 2015; 31:2867–2869 [View Article] [PubMed]
    [Google Scholar]
  47. Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res 2012; 40:11189–11201 [View Article] [PubMed]
    [Google Scholar]
  48. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–D36 [View Article] [PubMed]
    [Google Scholar]
  49. Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M. ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol 2011; 12:R30 [View Article] [PubMed]
    [Google Scholar]
  50. Hawkey J, Hamidian M, Wick RR, Edwards DJ, Billman-Jacobe H et al. ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data. BMC Genomics 2015; 16:667 [View Article] [PubMed]
    [Google Scholar]
  51. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  52. Darling AE, Mau B, Perna NT. Progressive Mauve: multiple alignment of genomes with gene flux and rearrangement. arXiv 20090910.5780
    [Google Scholar]
  53. Gutzwiller F, Carmo CR, Miller DE, Rice DW, Newton ILG et al. Dynamics of Wolbachia pipientis gene expression across the Drosophila melanogaster life cycle. G3 2015; 5:2843–2856 [View Article]
    [Google Scholar]
  54. Chrostek E, Marialva MSP, Esteves SS, Weinert LA, Martinez J et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet 2013; 9:e1003896 [View Article]
    [Google Scholar]
  55. Duarte EH, Carvalho A, López-Madrigal S, Costa J, Teixeira L. Forward genetics in Wolbachia: regulation of Wolbachia proliferation by the amplification and deletion of an addictive genomic island. PLoS Genet 2021; 17:e1009612 [View Article]
    [Google Scholar]
  56. Shropshire JD, Bordenstein SR. Two-by-one model of cytoplasmic incompatibility: synthetic recapitulation by transgenic expression of cifA and cifB in Drosophila. PLoS Genet 2019; 15:e1008221 [View Article] [PubMed]
    [Google Scholar]
  57. Morrow JL, Schneider DI, Klasson L, Janitz C, Miller WJ et al. Parallel sequencing of Wolbachia wCer2 from donor and novel hosts reveals multiple incompatibility factors and genome stability after host transfers. Genome Biol Evol 2020; 12:720–735 [View Article] [PubMed]
    [Google Scholar]
  58. Abbot P, Moran NA. Extremely low levels of genetic polymorphism in endosymbionts (Buchnera) of aphids (Pemphigus. Mol Ecol 2002; 11:2649–2660 [View Article] [PubMed]
    [Google Scholar]
  59. Funk DJ, Wernegreen JJ, Moran NA. Intraspecific variation in symbiont genomes: bottlenecks and the aphid-buchnera association. Genetics 2001; 157:477–489 [PubMed]
    [Google Scholar]
  60. Hotopp JCD, Lin M, Madupu R, Crabtree J, Angiuoli SV et al. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet 2006; 2:e21
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000641
Loading
/content/journal/mgen/10.1099/mgen.0.000641
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error