1887

Abstract

is the main causative agent responsible for visceral leishmaniasis (VL), a disease with global distribution. The genomic structure and genetic variation of this species have been widely studied in different parts of the world. However, in some countries, this information is still yet unknown, as is the genomic behaviour of the main antigens used in VL diagnosis (rK39 and rK28), which have demonstrated variable sensitivity and specificity in a manner dependent on the geographic region analysed. The objective of this study was to explore the genomic architecture and diversity of four Colombian isolates obtained in this study and to compare these results with the genetic analysis of 183 . isolates from across the world (obtained from public databases), as well as to analyse the whole rK39 and rK28 antigen sequences in our dataset. The results showed that, at the global level, has high genetic homogeneity and extensive aneuploidy. Furthermore, we demonstrated that there are distinct populations of circulating in various countries throughout the globe and that populations of distant countries have close genomic relationships. Additionally, this study demonstrated the high genetic variability of the rK28 antigen worldwide. In conclusion, our study allowed us to (i) expand our knowledge of the genomic structure of global ; (ii) describe the intra-specific genomic variability of this species; and (iii) understand the genomic characteristics of the main antigens used in the diagnosis of VL. Additionally, this is the first study to report whole-genome sequences of Colombian isolates.

Funding
This study was supported by the:
  • Universidad del Rosario (Award Internal Funds)
    • Principle Award Recipient: DAVID RAMIREZJUAN
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000640
2021-09-07
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/9/mgen000640.html?itemId=/content/journal/mgen/10.1099/mgen.0.000640&mimeType=html&fmt=ahah

References

  1. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P. Leishmaniasis worldwide and global estimates of its incidence. PloS one 2012; 7:e35671 [View Article] [PubMed]
    [Google Scholar]
  2. Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet 2018; 392:951–970 [View Article] [PubMed]
    [Google Scholar]
  3. Organization PAH. Epidemiological report of the Americas. Report N° 7 Dec-2019; 2019
  4. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control?. Nat Rev Microbiol 2007; 5:873–882 [View Article] [PubMed]
    [Google Scholar]
  5. Pennisi MG, Persichetti MF. Feline leishmaniosis: Is the cat a small dog?. Vet Parasitol 2018; 251:131–137 [View Article] [PubMed]
    [Google Scholar]
  6. Dantas-Torres F. Canine leishmaniosis in South America. Parasites Vectors 2009; 2:S1 [View Article]
    [Google Scholar]
  7. Kaszak I, Planellas M, Dworecka-Kaszak B. Canine leishmaniosis - an emerging disease. Ann Parasitol 2015; 61:69–76 [PubMed]
    [Google Scholar]
  8. Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 2007; 39:839–847 [View Article] [PubMed]
    [Google Scholar]
  9. Carnielli JBT, Crouch K, Forrester S, Silva VC, Carvalho SFG. A Leishmania infantum genetic marker associated with miltefosine treatment failure for visceral leishmaniasis. EBioMedicine 2018; 36:83–91 [View Article] [PubMed]
    [Google Scholar]
  10. Teixeira DG, Monteiro GRG, Martins DRA, Fernandes MZ, Macedo-Silva V. Comparative analyses of whole genome sequences of Leishmania infantum isolates from humans and dogs in northeastern Brazil. Int J Parasitol 2017; 47:655–665 [View Article] [PubMed]
    [Google Scholar]
  11. Yasur-Landau D, Jaffe CL, David L, Doron-Faigenboim A, Baneth G. Resistance of Leishmania infantum to allopurinol is associated with chromosome and gene copy number variations including decrease in the S-adenosylmethionine synthetase (METK) gene copy number. Int J Parasitol Drugs Drug Resist 2018; 8:403–410 [View Article] [PubMed]
    [Google Scholar]
  12. Rogers MB, Downing T, Smith BA, Imamura H, Sanders M. Genomic confirmation of hybridisation and recent inbreeding in a vector-isolated Leishmania population. PLoS Genet 2014; 10:e1004092 [View Article] [PubMed]
    [Google Scholar]
  13. Bussotti G, Benkahla A, Jeddi F, Souiai O, Aoun K. Nuclear and mitochondrial genome sequencing of North-African Leishmania infantum isolates from cured and relapsed visceral leishmaniasis patients reveals variations correlating with geography and phenotype. Microb Genom 2020; 6: [View Article] [PubMed]
    [Google Scholar]
  14. Franssen SU, Durrant C, Stark O, Moser B, Downing T. Global genome diversity of the Leishmania donovani complex. eLife 2020; 9: [View Article] [PubMed]
    [Google Scholar]
  15. Carvalho KSS, da Silva Júnior WJ, da Silveira Regueira Neto M, Silva VC, de Sá Leitão Paiva Júnior S et al. Application of Next Generation sequencing (NGS) for descriptive analysis of 30 genomes of Leishmania infantum isolates in middle-north Brazil. Sci Rep 2020; 10:12321 [View Article] [PubMed]
    [Google Scholar]
  16. SIVIGILA Boletin epidemiologico. Sistema Nacional de Vigilancia en Salud Publica 2019
    [Google Scholar]
  17. Kuhne V, Rezaei Z, Pitzinger P, Buscher P. Systematic review on antigens for serodiagnosis of visceral leishmaniasis, with a focus on East Africa. PLoS Negl Trop Dis 2019; 13:e0007658 [View Article] [PubMed]
    [Google Scholar]
  18. Herrera G, Castillo A, Ayala MS, Florez C, Cantillo-Barraza O. Evaluation of four rapid diagnostic tests for canine and human visceral Leishmaniasis in Colombia. BMC Infect Dis 2019; 19:747 [View Article] [PubMed]
    [Google Scholar]
  19. Burns JM, Shreffler WG, Benson DR, Ghalib HW, Badaro R. Molecular characterization of a kinesin-related antigen of Leishmania chagasi that detects specific antibody in African and American visceral leishmaniasis. Proc Natl Acad Sci USA 1993; 90:775–779 [View Article] [PubMed]
    [Google Scholar]
  20. Pattabhi S, Whittle J, Mohamath R, El-Safi S, Moulton GG. Design, development and evaluation of rK28-based point-of-care tests for improving rapid diagnosis of visceral leishmaniasis. PLoS Negl Trop Dis 2010; 4: [View Article] [PubMed]
    [Google Scholar]
  21. Bhattacharyya T, Boelaert M, Miles MA. Comparison of visceral leishmaniasis diagnostic antigens in African and Asian Leishmania donovani reveals extensive diversity and region-specific polymorphisms. PLoS Negl Trop Dis 2013; 7:e2057 [View Article] [PubMed]
    [Google Scholar]
  22. Cunningham J, Hasker E, Das P, El Safi S, Goto H. A global comparative evaluation of commercial immunochromatographic rapid diagnostic tests for visceral leishmaniasis. Clin Infect Dis 2012; 55:1312–1319 [View Article] [PubMed]
    [Google Scholar]
  23. Abass E, Kang C, Martinkovic F, Semiao-Santos SJ, Sundar S. Heterogeneity of Leishmania donovani parasites complicates diagnosis of visceral leishmaniasis: comparison of different serological tests in three endemic regions. PloS one 2015; 10:e0116408 [View Article] [PubMed]
    [Google Scholar]
  24. da Silva MRB, Brandao NAA, Colovati M, de Sousa MMP, de Lima LC. Performance of two immunochromatographic tests for diagnosis of visceral leishmaniasis in patients coinfected with HIV. Parasitol Res 2018; 117:419–427 [View Article] [PubMed]
    [Google Scholar]
  25. Mukhtar M, Abdoun A, Ahmed AE, Ghalib H, Reed SG. Diagnostic accuracy of rK28-based immunochromatographic rapid diagnostic tests for visceral leishmaniasis: a prospective clinical cohort study in Sudan. Trans R Soc Trop Med Hyg 2015; 109:594–600 [View Article] [PubMed]
    [Google Scholar]
  26. Bezuneh A, Mukhtar M, Abdoun A, Teferi T, Takele Y. Comparison of point-of-care tests for the rapid diagnosis of visceral leishmaniasis in East African patients. Am J Trop Med Hyg 2014; 91:1109–1115 [View Article] [PubMed]
    [Google Scholar]
  27. Venturin GL, Bragato JP, Silva KL, de Lima VM. Recombinant K28 antigen in ELISA in the diagnosis of canine visceral leishmaniosis. Parasite Immunol 2015; 37:670–673 [View Article] [PubMed]
    [Google Scholar]
  28. Schwabl P, Boite MC, Bussotti G, Jacobs A, Andersson B. Colonization and genetic diversification processes of Leishmania infantum in the Americas. Commun Biol 2021; 4:139 [View Article] [PubMed]
    [Google Scholar]
  29. Brotherton MC, Bourassa S, Leprohon P, Legare D, Poirier GG. Proteomic and genomic analyses of antimony resistant Leishmania infantum mutant. PloS one 2013; 8:e81899 [View Article] [PubMed]
    [Google Scholar]
  30. Valdivia HO, Almeida LV, Roatt BM, Reis-Cunha JL, Pereira AA. Comparative genomics of canine-isolated Leishmania (Leishmania) amazonensis from an endemic focus of visceral leishmaniasis in Governador Valadares, southeastern Brazil. Sci Rep 2017; 7:40804 [View Article] [PubMed]
    [Google Scholar]
  31. Ramirez JD, Hernandez C, Leon CM, Ayala MS, Florez C. Taxonomy, diversity, temporal and geographical distribution of Cutaneous Leishmaniasis in Colombia: A retrospective study. Sci Rep 2016; 6:28266 [View Article] [PubMed]
    [Google Scholar]
  32. Patino LH, Mendez C, Rodriguez O, Romero Y, Velandia D. Spatial distribution, Leishmania species and clinical traits of Cutaneous Leishmaniasis cases in the Colombian army. PLoS Negl Trop Dis 2017; 11:e0005876 [View Article] [PubMed]
    [Google Scholar]
  33. Mount DW. Using the Basic Local Alignment Search Tool (BLAST. CSH Protoc 2007; 2007:pdb [View Article] [PubMed]
    [Google Scholar]
  34. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  35. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  36. Patino LH, Imamura H, Cruz-Saavedra L, Pavia P, Muskus C. Major changes in chromosomal somy, gene expression and gene dosage driven by Sb(III) in Leishmania braziliensis and Leishmania panamensis. Sci Rep 2019; 9:9485 [View Article] [PubMed]
    [Google Scholar]
  37. Gonzalez-de la Fuente S, Peiro-Pastor R, Rastrojo A, Moreno J, Carrasco-Ramiro F. Resequencing of the Leishmania infantum (strain JPCM5) genome and de novo assembly into 36 contigs. Sci Rep 2017; 7:18050 [View Article] [PubMed]
    [Google Scholar]
  38. Ilg T. Proteophosphoglycans of Leishmania. Parasitol Today 2000; 16:489–497 [View Article] [PubMed]
    [Google Scholar]
  39. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006; 23:254–267 [View Article] [PubMed]
    [Google Scholar]
  40. Cuypers B, Berg M, Imamura H, Dumetz F, De Muylder G. Integrated genomic and metabolomic profiling of ISC1, an emerging Leishmania donovani population in the Indian subcontinent. Infect Genet Evol 2018; 62:170–178 [View Article] [PubMed]
    [Google Scholar]
  41. Dumetz F, Imamura H, Sanders M, Seblova V, Myskova J. Modulation of aneuploidy in Leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. mBio 8: [View Article] [PubMed]
    [Google Scholar]
  42. Zhao S, Guo Y, Sheng Q, Shyr Y. Advanced heat map and clustering analysis using heatmap3. Biomed Res Int 2014; 2014:986048 [View Article] [PubMed]
    [Google Scholar]
  43. Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PloS one 2011; 6:e21800 [View Article] [PubMed]
    [Google Scholar]
  44. Tihon E, Imamura H, Van den Broeck F, Vermeiren L, Dujardin JC. Genomic analysis of Isometamidium Chloride resistance in Trypanosoma congolense. Int J Parasitol Drugs Drug Resist 2017; 7:350–361 [View Article] [PubMed]
    [Google Scholar]
  45. Raj A, Stephens M, Pritchard JK. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 2014; 197:573–589 [View Article] [PubMed]
    [Google Scholar]
  46. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005; 14:2611–2620 [View Article] [PubMed]
    [Google Scholar]
  47. Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010; 10:564–567 [View Article] [PubMed]
    [Google Scholar]
  48. Inouye M, Conway TC, Zobel J, Holt KE. Short read sequence typing (SRST): multi-locus sequence types from short reads. BMC genomics 2012; 13:338 [View Article] [PubMed]
    [Google Scholar]
  49. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  50. Okonechnikov K, Golosova O, Fursov M. team U Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 2012; 28:1166–1167 [View Article] [PubMed]
    [Google Scholar]
  51. Poon AF, Frost SD, Pond SL. Detecting signatures of selection from DNA sequences using Datamonkey. Methods Mol Biol 2009; 537:163–183 [View Article] [PubMed]
    [Google Scholar]
  52. Ribolla PE, Gushi LT, Pires E, Costa CH, Costa DL. Leishmania infantum genetic diversity and lutzomyia longipalpis mitochondrial haplotypes in Brazil. Biomed Res Int 2016; 2016:9249217 [View Article] [PubMed]
    [Google Scholar]
  53. Boite MC, Spath GF, Bussotti G, Porrozzi R, Morgado FN. Trans-atlantic spill over: deconstructing the ecological adaptation of Leishmania infantum in the Americas. Genes (Basel) 2019; 11: [View Article] [PubMed]
    [Google Scholar]
  54. Leblois R, Kuhls K, Francois O, Schonian G, Wirth T. Guns, germs and dogs: On the origin of Leishmania chagasi. Infect Genet Evol 11:1091–1095 [View Article] [PubMed]
    [Google Scholar]
  55. Lukes J, Mauricio IL, Schonian G, Dujardin JC, Soteriadou K. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc Natl Acad Sci USA 2007; 104:9375–9380 [View Article] [PubMed]
    [Google Scholar]
  56. Kuhls K, Alam MZ, Cupolillo E, Ferreira GE, Mauricio IL. Comparative microsatellite typing of new world leishmania infantum reveals low heterogeneity among populations and its recent old world origin. PLoS Negl Trop Dis 2011; 5:e1155 [View Article] [PubMed]
    [Google Scholar]
  57. Nozais JP. Hypotheses on the origin of certain parasites on the Latin American continent. Bull Soc Pathol Exot Filiales 1985; 78:401–412 [PubMed]
    [Google Scholar]
  58. Tagliamonte MS, Yowell CA, Elbadry MA, Boncy J, Raccurt CP. Genetic markers of adaptation of plasmodium falciparum to transmission by american vectors identified in the genomes of parasites from Haiti and South America. mSphere 2020; 5: [View Article] [PubMed]
    [Google Scholar]
  59. Gonzalez C, Cabrera OL, Munstermann LE, Ferro C. Distribution of Leishmania infantum vector species in Colombia. Biomedica 2006; 26:64–72 [PubMed]
    [Google Scholar]
  60. Ardila MM, Carrillo-Bonilla L, Pabon A, Robledo SM. Surveillance of phlebotomine fauna and Didelphis marsupialis (Didelphimorphia: Didelphidae) infection in an area highly endemic for visceral leishmaniasis in Colombia. Biomedica 2019; 39:252–264 [View Article] [PubMed]
    [Google Scholar]
  61. Falcao de Oliveira E, Galati EAB, Oliveira AG, Rangel EF, Carvalho BM. Ecological niche modelling and predicted geographic distribution of Lutzomyia cruzi, vector of Leishmania infantum in South America. PLoS Negl Trop Dis 2018; 12:e0006684 [View Article] [PubMed]
    [Google Scholar]
  62. Silva EM, Alves LC, Guerra NR, Farias MP, Oliveira EL. Leishmania spp. in Didelphis spp. from Northeastern Brazil. J Zoo Wildl Med 2016; 47:942–944 [View Article] [PubMed]
    [Google Scholar]
  63. Kaufer A, Barratt J, Stark D, Ellis J. The complete coding region of the maxicircle as a superior phylogenetic marker for exploring evolutionary relationships between members of the Leishmaniinae. Infect Genet Evol 2019; 70:90–100 [View Article] [PubMed]
    [Google Scholar]
  64. Camacho E, Rastrojo A, Sanchiz A, Gonzalez-de la Fuente S, Aguado B. Leishmania mitochondrial genomes: maxicircle structure and heterogeneity of minicircles. Genes (Basel) 2019; 10: [View Article] [PubMed]
    [Google Scholar]
  65. Patino LH, Muskus C, Munoz M, Ramirez JD. Genomic analyses reveal moderate levels of ploidy, high heterozygosity and structural variations in a Colombian isolate of Leishmania (Leishmania) amazonensis. Acta Trop 2019; 203:105296 [View Article] [PubMed]
    [Google Scholar]
  66. Patino Luz HM, Carlos M, David RJ. Genomic diversification, structural plasticity, and hybridization in Leishmania (Viannia) braziliensis. Front Cell Infect Microbiol 2020; 10:
    [Google Scholar]
  67. Bussotti G, Gouzelou E, Cortes Boite M, Kherachi I, Harrat Z. Leishmania genome dynamics during environmental adaptation reveal strain-specific differences in gene copy number variation, karyotype instability, and telomeric amplification. mBio 2018; 9: [View Article] [PubMed]
    [Google Scholar]
  68. Olekhnovitch R, Ryffel B, Muller AJ, Bousso P. Collective nitric oxide production provides tissue-wide immunity during Leishmania infection. J Clin Invest 2014; 124:1711–1722 [View Article] [PubMed]
    [Google Scholar]
  69. Timm T, Annoscia G, Klein J, Lochnit G. The Eukaryotic Elongation Factor 1 Alpha (eEF1alpha) from the Parasite Leishmania infantum is modified with the immunomodulatory substituent phosphorylcholine (PC. Molecules 2017; 22: [View Article] [PubMed]
    [Google Scholar]
  70. Carvalho S, Barreira da Silva R, Shawki A, Castro H, Lamy M. LiZIP3 is a cellular zinc transporter that mediates the tightly regulated import of zinc in Leishmania infantum parasites. Mol Microbiol 2015; 96:581–595 [View Article] [PubMed]
    [Google Scholar]
  71. Saini S, Bharati K, Shaha C, Mukhopadhyay CK. Zinc depletion promotes apoptosis-like death in drug-sensitive and antimony-resistance Leishmania donovani. Sci Rep 2017; 7:10488 [View Article] [PubMed]
    [Google Scholar]
  72. Patino LH, Munoz M, Muskus C, Mendez C, Ramirez JD. Intraspecific genomic divergence and minor structural variations in Leishmania (Viannia) panamensis. Genes (Basel) 2020; 11: [View Article] [PubMed]
    [Google Scholar]
  73. Iantorno SA, Durrant C, Khan A, Sanders MJ, Beverley SM. Gene expression in leishmania is regulated predominantly by gene dosage. mBio 2017; 8: [View Article] [PubMed]
    [Google Scholar]
  74. Segatto M, Ribeiro LS, Costa DL, Costa CH, Oliveira MR. Genetic diversity of Leishmania infantum field populations from Brazil. Mem Inst Oswaldo Cruz 2012; 107:39–47 [View Article] [PubMed]
    [Google Scholar]
  75. Diniz SA, Silva FL, Carvalho Neta AC, Bueno R, Guerra RM. Animal reservoirs for visceral leishmaniasis in densely populated urban areas. J Infect Dev Ctries 2008; 2:24–33 [View Article] [PubMed]
    [Google Scholar]
  76. Gonzalez C, Paz A, Ferro C. Predicted altitudinal shifts and reduced spatial distribution of Leishmania infantum vector species under climate change scenarios in Colombia. Acta Trop 2014; 129:83–90 [View Article] [PubMed]
    [Google Scholar]
  77. Oberle M, Balmer O, Brun R, Roditi I. Bottlenecks and the maintenance of minor genotypes during the life cycle of Trypanosoma brucei. PLoS Pathog 2010; 6:e1001023 [View Article] [PubMed]
    [Google Scholar]
  78. McCall LI, Zhang WW, Matlashewski G. Determinants for the development of visceral leishmaniasis disease. PLoS Pathog 2013; 9:e1003053 [View Article] [PubMed]
    [Google Scholar]
  79. Cordeiro AT, Michels PA, Delboni LF, Thiemann OH. The crystal structure of glucose-6-phosphate isomerase from Leishmania mexicana reveals novel active site features. Eur J Biochem 2004; 271:2765–2772 [View Article] [PubMed]
    [Google Scholar]
  80. Kuhls K, Keilonat L, Ochsenreither S, Schaar M, Schweynoch C. Multilocus microsatellite typing (MLMT) reveals genetically isolated populations between and within the main endemic regions of visceral leishmaniasis. Microbes Infect 2007; 9:334–343 [View Article] [PubMed]
    [Google Scholar]
  81. Alam MZ, Kuhls K, Schweynoch C, Sundar S, Rijal S. Multilocus microsatellite typing (MLMT) reveals genetic homogeneity of Leishmania donovani strains in the Indian subcontinent. Infect Genet Evol 2009; 9:24–31 [View Article] [PubMed]
    [Google Scholar]
  82. Bangert M, Flores-Chavez MD, Llanes-Acevedo IP, Arcones C, Chicharro C. Validation of rK39 immunochromatographic test and direct agglutination test for the diagnosis of Mediterranean visceral leishmaniasis in Spain. PLoS Negl Trop Dis 2018; 12:e0006277 [View Article] [PubMed]
    [Google Scholar]
  83. WHO DEST. Visceral leishmaniasis rapid diagnostic test performance; 2010
  84. Oliveira Dos Santos Maciel M, Soares MF, Costa SF, Bragato JP, Rebech GT et al. Plasmonic rK28 ELISA improves the diagnosis of canine Leishmania infection. Parasite Immunol 2020; 42:e12684 [View Article]
    [Google Scholar]
  85. Vaish M, Bhatia A, Reed SG, Chakravarty J, Sundar S. Evaluation of rK28 antigen for serodiagnosis of visceral Leishmaniasis in India. Clin Microbiol Infect 2012; 18:81–85 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000640
Loading
/content/journal/mgen/10.1099/mgen.0.000640
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error