1887

Abstract

and dominate in anaerobic gastrointestinal microbiomes, particularly the rumen, where they play a key role in harvesting dietary energy. Within these genera, five rumen species have been classified (, , , and ) and more recently an additional sp. group was added. Given the recent increase in available genomes, we re-investigated the phylogenetic systematics and evolution of and . Across 71 genomes, we show using 16S rDNA and 40 gene marker phylogenetic trees that the current six species designations (, , , sp., and ) are found. However, pangenome analysis showed vast genomic variation and a high abundance of accessory genes (91.50–99.34 %), compared with core genes (0.66–8.50 %), within these six taxonomic groups, suggesting incorrectly assigned taxonomy. Subsequent pangenome accessory genomes under varying core gene cut-offs (%) and average nucleotide identity (ANI) analysis suggest the existence of 42 species within 32 genera. Pangenome analysis of those that still group within , and , based on revised ANI phylogeny, also showed possession of very open genomes, illustrating the diversity that exists even within these groups. All strains of both and also shared a broad range of clusters of orthologous genes (COGs) (870), indicating recent evolution from a common ancestor. We also demonstrate that the carbohydrate-active enzymes (CAZymes) predominantly belong to glycosyl hydrolase (GH)2, 3, 5, 13 and 43, with numerous within family isoforms apparent, likely facilitating metabolic plasticity and resilience under dietary perturbations. This study provides a major advancement in our functional and evolutionary understanding of these important anaerobic bacteria.

Funding
This study was supported by the:
  • department for education
    • Principle Award Recipient: SaraPidcock
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000638
2021-10-04
2021-10-25
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/10/mgen000638.html?itemId=/content/journal/mgen/10.1099/mgen.0.000638&mimeType=html&fmt=ahah

References

  1. Bapteste E, Boucher Y. Epistemological impacts of horizontal gene transfer on classification in microbiology. Methods Mol Biol 2009; 532:55–72 [View Article] [PubMed]
    [Google Scholar]
  2. Thane Papke R. A critique of prokaryotic species concepts. Methods Mol Biol 2009; 532:379–395 [View Article] [PubMed]
    [Google Scholar]
  3. Schleifer KH. Classification of Bacteria and Archaea: past, present and future. Syst Appl Microbiol 2009; 32:533–542 [View Article] [PubMed]
    [Google Scholar]
  4. Wayne L, Brenner D, Colwell R, Grimont P, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  5. Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 2019; 10:5029 [View Article] [PubMed]
    [Google Scholar]
  6. Zhang W, Du P, Zheng H, Yu W, Wan L et al. Whole-genome sequence comparison as a method for improving bacterial species definition. J Gen Appl Microbiol 2014; 60:75–78 [View Article] [PubMed]
    [Google Scholar]
  7. Mende DR, Sunagawa S, Zeller G, Bork P. Accurate and universal delineation of prokaryotic species. Nat Methods 2013; 10:881–884 [View Article] [PubMed]
    [Google Scholar]
  8. Rossi-Tamisier M, Benamar S, Raoult D, Fournier PE. Cautionary tale of using 16S rRNA gene sequence similarity values in identification of human-associated bacterial species. Int J Syst Evol Microbiol 2015; 65:1929–1934 [View Article] [PubMed]
    [Google Scholar]
  9. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  10. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B et al. Toward automatic reconstruction of a highly resolved tree of life. Science 2006; 311:1283–1287 [View Article] [PubMed]
    [Google Scholar]
  11. Cowan ST. Sense and nonsense in bacterial taxonomy. J Gen Microbiol 1971; 67:1–8 [View Article] [PubMed]
    [Google Scholar]
  12. Goryunov DV, Nagaev BE, Nikolaev MY, Alexeevski AV, Troitsky AV. Moss phylogeny reconstruction using nucleotide pangenome of complete mitogenome sequences. Biochemistry (Mosc) 2015; 80:1522–1527 [View Article] [PubMed]
    [Google Scholar]
  13. Moldovan MA, Gelfand MS. Pangenomic definition of prokaryotic species and the phylogenetic structure of Prochlorococcus spp. Front Microbiol 2018; 9:428 [View Article] [PubMed]
    [Google Scholar]
  14. Rouli L, Merhej V, Fournier PE, Raoult D. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect 2015; 7:72–85 [View Article] [PubMed]
    [Google Scholar]
  15. Ricard G, McEwan NR, Dutilh BE, Jouany JP, Macheboeuf D et al. Horizontal gene transfer from bacteria to rumen ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics 2006; 7:22 [View Article] [PubMed]
    [Google Scholar]
  16. Seshadri R, Leahy SC, Attwood GT, Teh KH, Lambie SC et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 collection. Nat Biotechnol 2018; 36:359–367 [View Article] [PubMed]
    [Google Scholar]
  17. Henderson G, Cox F, Ganesh S, Jonker A, Young W et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 2015; 5:14567 [View Article] [PubMed]
    [Google Scholar]
  18. Bryant MP. Bergey’s manual of systematic bacteriology. Sneath P, Mair N, Sharpe H, Holt J. eds In Bergey’s Manual of Systematic Bacteriology vol. 2 Baltimore: Williams and Wilkins; 1986 pp 1376–1379
    [Google Scholar]
  19. Bryant MP, Small N. The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J Bacteriol 1956; 72:16–21 [View Article] [PubMed]
    [Google Scholar]
  20. Cheng KJ, Costerton JW. Ultrastructure of Butyrivibrio fibrisolvens: a gram-positive bacterium. J Bacteriol 1977; 129:1506–1512 [View Article] [PubMed]
    [Google Scholar]
  21. Hespell RB, Wolf R, Bothast RJ. Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria. Appl Environ Microbiol 1987; 53:2849–2853 [View Article] [PubMed]
    [Google Scholar]
  22. Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R et al. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat Biotechnol 2019; 37:953–961 [View Article] [PubMed]
    [Google Scholar]
  23. Kopecny J, Zorec M, Mrazek J, Kobayashi Y, Marinsek-Logar R. Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int J Syst Evol Microbiol 2003; 53:201–209 [View Article] [PubMed]
    [Google Scholar]
  24. Moore W, Johnson J, Holdeman L. Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int J Syst Evol Microbiol 1976; 26:238–252
    [Google Scholar]
  25. Moon CD, Pacheco DM, Kelly WJ, Leahy SC, Li D et al. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. Int J Syst Evol Microbiol 2008; 58:2041–2045 [View Article] [PubMed]
    [Google Scholar]
  26. Van Gylswyk N, Hippe H, Rainey F. Pseudobutyrivibrio ruminis gen. nov., sp. nov., a butyrate-producing bacterium from the rumen that closely resembles Butyrivibrio fibrisolvens in phenotype. Int J Syst Evol Microbiol 1996; 46:559–563
    [Google Scholar]
  27. Palevich N, Kelly WJ, Leahy SC, Denman S, Altermann E et al. Comparative genomics of rumen Butyrivibrio spp. uncovers a continuum of polysaccharide-degrading capabilities. Appl Environ Microbiol 2020; 86:e01993-19 [View Article] [PubMed]
    [Google Scholar]
  28. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  29. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014; 15:R46 [View Article] [PubMed]
    [Google Scholar]
  30. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  31. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 2016; 44:W3–W10 [View Article]
    [Google Scholar]
  32. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42:D633–D642 [View Article] [PubMed]
    [Google Scholar]
  33. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  34. Wu M, Eisen JA. A simple, fast, and accurate method of phylogenomic inference. Genome Biol 2008; 9:R151 [View Article] [PubMed]
    [Google Scholar]
  35. Creevey CJ, Doerks T, Fitzpatrick DA, Raes J, Bork P. Universally distributed single-copy genes indicate a constant rate of horizontal transfer. PLoS One 2011; 6:e22099 [View Article] [PubMed]
    [Google Scholar]
  36. Letunic I, Bork P. Interactive Tree of Life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article] [PubMed]
    [Google Scholar]
  37. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  38. Ozer EA, Allen JP, Hauser AR. Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt. BMC Genomics 2014; 15:737 [View Article] [PubMed]
    [Google Scholar]
  39. Harris CD, Torrance EL, Raymann K, Bobay LM. CoreCruncher: fast and robust construction of core genomes in large prokaryotic data sets. Mol Biol Evol 2021; 38:727–734 [View Article] [PubMed]
    [Google Scholar]
  40. Zou W, Ye G, Zhang K, Yang H, Yang J. Analysis of the core genome and pangenome of Clostridium butyricum. Genome 2021; 64:51–61 [View Article] [PubMed]
    [Google Scholar]
  41. Bentley S. Sequencing the species pan-genome. Nat Rev Microbiol 2009; 7:258–259 [View Article] [PubMed]
    [Google Scholar]
  42. Lefebure T, Stanhope MJ. Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol 2007; 8:R71 [View Article] [PubMed]
    [Google Scholar]
  43. Tettelin H, Riley D, Cattuto C, Medini D. Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 2008; 11:472–477 [View Article] [PubMed]
    [Google Scholar]
  44. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article] [PubMed]
    [Google Scholar]
  45. Ekseth OK, Kuiper M, Mironov V. orthAgogue: an agile tool for the rapid prediction of orthology relations. Bioinformatics 2014; 30:734–736 [View Article] [PubMed]
    [Google Scholar]
  46. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003; 13:2178–2189 [View Article] [PubMed]
    [Google Scholar]
  47. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph 2014; 20:1983–1992 [View Article] [PubMed]
    [Google Scholar]
  48. Yin Y, Mao X, Yang J, Chen X, Mao F et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2012; 40:W445–W451 [View Article] [PubMed]
    [Google Scholar]
  49. Madeira F, Park YM, Lee J, Buso N, Gur T et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 2019; 47:W636–W641 [View Article]
    [Google Scholar]
  50. Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016; 32:3047–3048 [View Article] [PubMed]
    [Google Scholar]
  51. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  52. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  53. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  54. Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014; 30:923–930 [View Article] [PubMed]
    [Google Scholar]
  55. Shi W, Moon CD, Leahy SC, Kang D, Froula J et al. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res 2014; 24:1517–1525 [View Article] [PubMed]
    [Google Scholar]
  56. Kelly WJ, Leahy SC, Altermann E, Yeoman CJ, Dunne JC et al. The glycobiome of the rumen bacterium Butyrivibrio proteoclasticus B316(T) highlights adaptation to a polysaccharide-rich environment. PLoS One 2010; 5:e11942 [View Article] [PubMed]
    [Google Scholar]
  57. Cotta MA, Hespell RB. Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens. Appl Environ Microbiol 1986; 52:51–58 [View Article] [PubMed]
    [Google Scholar]
  58. Paillard D, McKain N, Chaudhary LC, Walker ND, Pizette F et al. Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie van Leeuwenhoek 2007; 91:417–422 [View Article] [PubMed]
    [Google Scholar]
  59. Bond JJ, Dunne JC, Kwan FY, Li D, Zhang K et al. Carbohydrate transporting membrane proteins of the rumen bacterium, Butyrivibrio proteoclasticus. J Proteomics 2012; 75:3138–3144 [View Article] [PubMed]
    [Google Scholar]
  60. Marounek M, Petr O. Fermentation of glucose and xylose in ruminal strains of Butyrivibrio fibrisolvens. Lett Appl Microbiol 1995; 21:272–276 [View Article] [PubMed]
    [Google Scholar]
  61. Palevich N, Kelly WJ, Leahy SC, Altermann E, Rakonjac J et al. The complete genome sequence of the rumen bacterium Butyrivibrio hungatei MB2003. Stand Genomic Sci 2017; 12:72 [View Article] [PubMed]
    [Google Scholar]
  62. Kasperowicz A, Stan-Glasek K, Guczynska W, Piknova M, Pristas P et al. Sucrose phosphorylase of the rumen bacterium Pseudobutyrivibrio ruminis strain A. J Appl Microbiol 2009; 107:812–820 [View Article] [PubMed]
    [Google Scholar]
  63. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 1985; 82:6955–6959 [View Article] [PubMed]
    [Google Scholar]
  64. Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 2004; 186:2629–2635 [View Article] [PubMed]
    [Google Scholar]
  65. Beumer A, Robinson JB. A broad-host-range, generalized transducing phage (SN-T) acquires 16S rRNA genes from different genera of bacteria. Appl Environ Microbiol 2005; 71:8301–8304 [View Article] [PubMed]
    [Google Scholar]
  66. Wittouck S, Wuyts S, Meehan CJ, Noort van, Lebeer S. A genome-based species taxonomy of the Lactobacillus genus complex. mSystems 2019; 4: [View Article] [PubMed]
    [Google Scholar]
  67. Zheng J, Wittouck S, Salvetti E, Franz C, Harris HMB et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782–2858 [View Article] [PubMed]
    [Google Scholar]
  68. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  69. Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  70. McNally A, Oren Y, Kelly D, Pascoe B, Dunn S et al. Combined analysis of variation in core, accessory and regulatory genome regions provides a super-resolution view into the evolution of bacterial populations. PLoS Genet 2016; 12:e1006280 [View Article] [PubMed]
    [Google Scholar]
  71. Gabaldon T, Koonin EV. Functional and evolutionary implications of gene orthology. Nat Rev Genet 2013; 14:360–366 [View Article] [PubMed]
    [Google Scholar]
  72. Mannarelli B. Deoxyribonucleic acid relatedness among strains of the species Butyrivibrio fibrisolvens. Int J Syst Evol Microbiol 1988; 38:340–347
    [Google Scholar]
  73. Lassalle F, Perian S, Bataillon T, Nesme X, Duret L et al. GC-Content evolution in bacterial genomes: the biased gene conversion hypothesis expands. PLoS Genet 2015; 11:e1004941 [View Article] [PubMed]
    [Google Scholar]
  74. Lapierre P, Gogarten JP. Estimating the size of the bacterial pan-genome. Trends Genet 2009; 25:107–110 [View Article] [PubMed]
    [Google Scholar]
  75. Huang S, Zhang S, Jiao N, Chen F. Comparative genomic and phylogenomic analyses reveal a conserved core genome shared by estuarine and oceanic cyanopodoviruses. PLoS One 2015; 10:11e0142962
    [Google Scholar]
  76. Hiratani I, Leskovar A, Gilbert DM. Differentiation-induced replication-timing changes are restricted to AT-rich/long interspersed nuclear element (LINE)-rich isochores. Proc Natl Acad Sci U S A 2004; 101:16861–16866 [View Article] [PubMed]
    [Google Scholar]
  77. Bohlin J, Eldholm V, Pettersson JH, Brynildsrud O, Snipen L. The nucleotide composition of microbial genomes indicates differential patterns of selection on core and accessory genomes. BMC Genomics 2017; 18:151 [View Article] [PubMed]
    [Google Scholar]
  78. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014; 42:D490–D495 [View Article] [PubMed]
    [Google Scholar]
  79. Ferrer M, Ghazi A, Beloqui A, Vieites JM, Lopez-Cortes N et al. Functional metagenomics unveils a multifunctional glycosyl hydrolase from the family 43 catalysing the breakdown of plant polymers in the calf rumen. PLoS One 2012; 7:e38134
    [Google Scholar]
  80. Mertz B, Gu X, Reilly PJ. Analysis of functional divergence within two structurally related glycoside hydrolase families. Biopolymers 2009; 91:478–495 [View Article] [PubMed]
    [Google Scholar]
  81. Ohta T. Gene families: Multigene families and superfamilies. eLS 2006; 1:
    [Google Scholar]
  82. Rubino F, Carberry C, Waters SM, Kenny D, McCabe MS et al. Divergent functional isoforms drive niche specialisation for nutrient acquisition and use in rumen microbiome. ISME J 2017; 11:932–944 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000638
Loading
/content/journal/mgen/10.1099/mgen.0.000638
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error