1887

Abstract

Sequence-based characterization of bacterial communities has long been a hostage of limitations of both 16S rRNA gene and whole metagenome sequencing. Neither approach is universally applicable, and the main efforts to resolve constraints have been devoted to improvement of computational prediction tools. Here, we present semi-targeted 16S rRNA sequencing (st16S-seq), a method designed for sequencing V1–V2 regions of the 16S rRNA gene along with the genomic locus upstream of the gene. By analysis of 13 570 bacterial genome assemblies, we show that genome-linked 16S rRNA sequencing is superior to individual hypervariable regions or full-length gene sequences in terms of classification accuracy and identification of gene copy numbers. Using mock communities and soil samples we experimentally validate st16S-seq and benchmark it against the established microbial classification techniques. We show that st16S-seq delivers accurate estimation of 16S rRNA gene copy numbers, enables taxonomic resolution at the species level and closely approximates community structures obtainable by whole metagenome sequencing.

Funding
This study was supported by the:
  • Thermo Fisher Scientific
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000624
2021-09-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/9/mgen000624.html?itemId=/content/journal/mgen/10.1099/mgen.0.000624&mimeType=html&fmt=ahah

References

  1. Woese CR. Bacterial evolution. Microbiol Rev 1987; 51:221–271 [View Article] [PubMed]
    [Google Scholar]
  2. Gilbert JA, Jansson JK, Knight R. The Earth Microbiome project: successes and aspirations. BMC Biol 2014; 12:69 [View Article] [PubMed]
    [Google Scholar]
  3. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R et al. The human microbiome project. Nature 2007; 449:804–810 [View Article] [PubMed]
    [Google Scholar]
  4. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  5. Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 2018; 34:2371–2375 [View Article] [PubMed]
    [Google Scholar]
  6. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  7. Gee JE, Sacchi CT, Glass MB, De BK, Weyant RS et al. Use of 16S rRNA gene sequencing for rapid identification and differentiation of Burkholderia pseudomallei and B. mallei. J Clin Microbiol 2003; 41:4647–4654 [View Article] [PubMed]
    [Google Scholar]
  8. Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 2004; 186:2629–2635 [View Article] [PubMed]
    [Google Scholar]
  9. Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC et al. Population genomics of early events in the ecological differentiation of bacteria. Science 2012; 336:48–51 [View Article] [PubMed]
    [Google Scholar]
  10. Zhou W, Chow KH, Fleming E, Oh J. Selective colonization ability of human fecal microbes in different mouse gut environments. ISME J 2019; 13:805–823 [View Article] [PubMed]
    [Google Scholar]
  11. Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res 2016; 26:1612–1625 [View Article] [PubMed]
    [Google Scholar]
  12. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013; 499:431–437 [View Article] [PubMed]
    [Google Scholar]
  13. Tikhonov M, Leach RW, Wingreen NS. Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J 2015; 9:68–80 [View Article] [PubMed]
    [Google Scholar]
  14. Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 2019; 10:5029 [View Article] [PubMed]
    [Google Scholar]
  15. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004; 304:66–74 [View Article] [PubMed]
    [Google Scholar]
  16. Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci 2017; 3:e104
    [Google Scholar]
  17. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 2015; 12:902–903 [View Article] [PubMed]
    [Google Scholar]
  18. Milanese A, Mende DR, Paoli L, Salazar G, Ruscheweyh HJ et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat Commun 2019; 10:1014 [View Article] [PubMed]
    [Google Scholar]
  19. Genome Bethesda (MD): National library of medicine (US), National center for biotechnology information; 2004 https://www.ncbi.nlm.nih.gov/gene
  20. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 2013; 41:e1 [View Article] [PubMed]
    [Google Scholar]
  21. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539 [View Article] [PubMed]
    [Google Scholar]
  22. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009; 75:7537–7541 [View Article] [PubMed]
    [Google Scholar]
  23. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73:5261–5267 [View Article] [PubMed]
    [Google Scholar]
  24. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–6 [View Article] [PubMed]
    [Google Scholar]
  25. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 2016; 4:e2584 [View Article] [PubMed]
    [Google Scholar]
  26. BBMap A fast, accurate, splice-aware aligner. United states: N. P., 2014. Web; 2014 https://sourceforge.net/projects/bbmap
  27. Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics 2013; 29:2487–2489 [View Article] [PubMed]
    [Google Scholar]
  28. Edwards JA, Edwards RA. Fastq-pair: efficient synchronization of paired-end fastq files; 2019 https://www.biorxiv.org/content/10.1101/552885v1
  29. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  30. Bushnell B, Rood J, Singer E. BBMerge - Accurate paired shotgun read merging via overlap. PLoS One 2017; 12:e0185056 [View Article] [PubMed]
    [Google Scholar]
  31. Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2014; 2:e593 [View Article] [PubMed]
    [Google Scholar]
  32. Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 2015; 3:e1420 [View Article] [PubMed]
    [Google Scholar]
  33. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 2016; 13:581–583 [View Article] [PubMed]
    [Google Scholar]
  34. Shen W, Xiong J. TaxonKit: a cross-platform and efficient NCBI taxonomy toolkit; 2019 https://www.biorxiv.org/content/10.1101/513523v1
  35. Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 2013; 10:71–73 [View Article] [PubMed]
    [Google Scholar]
  36. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  37. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. 1000 genome project data processing subgroup. The sequence alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079
    [Google Scholar]
  38. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20:257 [View Article] [PubMed]
    [Google Scholar]
  39. Lu J, Salzberg SL. Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2. Microbiome 2020; 8:124 [View Article] [PubMed]
    [Google Scholar]
  40. Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 2017; 11:2639–2643 [View Article] [PubMed]
    [Google Scholar]
  41. Routh A, Head SR, Ordoukhanian P, Johnson JE. ClickSeq: Fragmentation-Free next-generation sequencing via click ligation of adaptors to stochastically terminated 3’-Azido cDNAs. J Mol Biol 2015; 427:2610–2616 [View Article] [PubMed]
    [Google Scholar]
  42. Miura F, Fujino T, Kogashi K, Shibata Y, Miura M et al. Triazole linking for preparation of a next-generation sequencing library from single-stranded DNA. Nucleic Acids Res 2018; 46:e95 [View Article] [PubMed]
    [Google Scholar]
  43. Winand R, Bogaerts B, Hoffman S, Lefevre L, Delvoye M et al. Targeting the 16S rRNA gene for bacterial identification in complex mixed samples: comparative evaluation of second (Illumina) and third (Oxford Nanopore Technologies) generation sequencing technologies. Int J Mol Sci 2019; 21:298 [View Article]
    [Google Scholar]
  44. Soriano-Lerma A, Pérez-Carrasco V, Sánchez-Marañón M, Ortiz- González M, Sánchez-Martín V et al. Influence of 16S rRNA target region on the outcome of microbiome studies in soil and saliva samples. Sci Rep 2020; 10:13637 [View Article] [PubMed]
    [Google Scholar]
  45. Hashimoto JG, Stevenson BS, Schmidt TM. Rates and consequences of recombination between rRNA operons. J Bacteriol 2003; 185:966–972 [View Article] [PubMed]
    [Google Scholar]
  46. Espejo RT, Plaza N. Multiple ribosomal RNA operons in bacteria; their concerted evolution and potential consequences on the rate of evolution of their 16S rRNA. Front Microbiol 2018; 9:1232 [View Article] [PubMed]
    [Google Scholar]
  47. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  48. Graspeuntner S, Loeper N, Künzel S, Baines JF, Rupp J et al. Selection of validated hypervariable regions is crucial in 16S-based microbiota studies of the female genital tract. Sci Rep 2018; 8:9678 [View Article] [PubMed]
    [Google Scholar]
  49. Chen Z, Hui PC, Hui M, Yeoh YK, Wong PY et al. Impact of preservation method and 16S rRNA hypervariable region on gut microbiota profiling. mSystems 2019; 4:e00271–18 [View Article] [PubMed]
    [Google Scholar]
  50. Ogier JC, Pagès S, Galan M, Barret M, Gaudriault S et al. rpoB, a promising marker for analyzing the diversity of bacterial communities by amplicon sequencing. BMC Microbiol 2019; 19:171 [View Article] [PubMed]
    [Google Scholar]
  51. Hillmann B, Al-Ghalith GA, Shields-Cutler RR, Zhu Q, Gohl DM et al. Evaluating the information content of shallow shotgun metagenomics. mSystems 2018; 3:e00069–18 [View Article] [PubMed]
    [Google Scholar]
  52. Louca S, Doebeli M, Parfrey LW. Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome 2018; 6:41 [View Article] [PubMed]
    [Google Scholar]
  53. Zhang Y, Ji P, Wang J, Zhao F. RiboFR-Seq: a novel approach to linking 16S rRNA amplicon profiles to metagenomes. Nucleic Acids Res 2016; 44:e99 [View Article] [PubMed]
    [Google Scholar]
  54. Sevim V, Lee J, Egan R, Clum A, Hundley H et al. Shotgun metagenome data of a defined mock community using Oxford Nanopore, PacBio and Illumina technologies. Sci Data 2019; 6:285 [View Article] [PubMed]
    [Google Scholar]
  55. Fujiyoshi S, Muto-Fujita A, Maruyama F. Evaluation of PCR conditions for characterizing bacterial communities with full-length 16S rRNA genes using a portable nanopore sequencer. Sci Rep 2020; 10:12580 [View Article] [PubMed]
    [Google Scholar]
  56. Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F et al. Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 2011; 77:1315–1324 [View Article] [PubMed]
    [Google Scholar]
  57. Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res 2019; 47:e103 [View Article] [PubMed]
    [Google Scholar]
  58. Sabat AJ, van Zanten E, Akkerboom V, Wisselink G, van Slochteren K et al. Targeted next-generation sequencing of the 16S-23S rRNA region for culture-independent bacterial identification - increased discrimination of closely related species. Sci Rep 2017; 7:3434 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000624
Loading
/content/journal/mgen/10.1099/mgen.0.000624
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error