1887

Abstract

Natural products (NPs) are synthesized by biosynthetic gene clusters (BGCs), whose genes are involved in producing one or a family of chemically related metabolites. Advances in comparative genomics have been favourable for exploiting huge amounts of data and discovering previously unknown BGCs. Nonetheless, studying distribution patterns of novel BGCs and elucidating the biosynthesis of orphan metabolites remains a challenge. To fill this knowledge gap, our study developed a pipeline for high-quality comparative genomics for the actinomycete genus , which is metabolically versatile, yet understudied in terms of NPs, leading to a total of 110 genomes, 1891 BGCs and 717 non-ribosomal peptide synthetases (NRPSs). Phylogenomic inferences showed four major clades retrieved from strains of several ecological habitats. BiG-SCAPE sequence similarity BGC networking revealed 44 unidentified gene cluster families (GCFs) for NRPS, which presented a phylogenomic-dependent evolution pattern, supporting the hypothesis of vertical gene transfer. As a proof of concept, we analysed in-depth one of our marine strains, sp. H-CA8f, which revealed a unique BGC distribution within its phylogenomic clade, involved in producing a chloramphenicol-related compound. While this BGC is part of the most abundant and widely distributed NRPS GCF, analysis unveiled major differences regarding its genetic context, co-occurrence patterns and modularity. This BGC is composed of three sections, two well-conserved right/left arms flanking a very variable middle section, composed of genes. The presence of two non-canonical domains in H-CA8f’s BGC may contribute to adding chemical diversity to this family of NPs. Liquid chromatography-high resolution MS and dereplication efforts retrieved a set of related orphan metabolites, the corynecins, which to our knowledge are reported here for the first time in . Overall, our data provide insights to connect BGC uniqueness with orphan metabolites, by revealing key comparative genomic features supported by models of BGC distribution along phylogeny.

Funding
This study was supported by the:
  • Comisión Nacional de Investigación Científica y Tecnológica (Award 21180908)
    • Principle Award Recipient: LeonardoZamora-Leiva
  • Comisión Nacional de Investigación Científica y Tecnológica (Award 21191625)
    • Principle Award Recipient: AndrésCumsille
  • Comisión Nacional de Investigación Científica y Tecnológica (Award ACT192057)
    • Principle Award Recipient: EduardoCastro-Nallar
  • Fondo Nacional de Desarrollo Científico y Tecnológico (Award 1200834)
    • Principle Award Recipient: EduardoCastro-Nallar
  • Fondo Nacional de Desarrollo Científico y Tecnológico (Award 3180399)
    • Principle Award Recipient: AgustinaUndabarrena
  • Comisión Nacional de Investigación Científica y Tecnológica (Award ACT172128)
    • Principle Award Recipient: BeatrizCamara
  • Fondo Nacional de Desarrollo Científico y Tecnológico (Award 1171555)
    • Principle Award Recipient: BeatrizCamara
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000621
2021-07-09
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/7/mgen000621.html?itemId=/content/journal/mgen/10.1099/mgen.0.000621&mimeType=html&fmt=ahah

References

  1. Zotchev SB. Genomics-based insights into the evolution of secondary metabolite biosynthesis in actinomycete bacteria. In Pontarotti P. eds Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life Cham: Springer International Publishing; 2014 pp 35–45
    [Google Scholar]
  2. Jensen PR. Natural products and the gene cluster revolution. Trends Microbiol 2016; 24:968–977 [View Article] [PubMed]
    [Google Scholar]
  3. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 2016; 17:333–351 [View Article] [PubMed]
    [Google Scholar]
  4. Miller IJ, Chevrette MG, Kwan JC. Interpreting microbial biosynthesis in the genomic age: Biological and practical considerations. Mar Drugs 2017; 15:165 [View Article]
    [Google Scholar]
  5. Ziemert N, Alanjary M, Weber T. The evolution of genome mining in microbes – a review. Nat Prod Rep 2016; 33:988–1005 [View Article] [PubMed]
    [Google Scholar]
  6. Cruz-Morales P, Kopp JF, Martínez-Guerrero C, Yáñez-Guerra LA, Selem-Mojica N et al. Phylogenomic analysis of natural products biosynthetic gene clusters allows discovery of arseno-organic metabolites in model streptomycetes. Genome Biol Evol 2016; 8:1906–1916 [View Article] [PubMed]
    [Google Scholar]
  7. Sélem-Mojica N, Aguilar C, Gutiérrez-García K, Martínez-Guerrero CE, Barona-Gómez F. EvoMining reveals the origin and fate of natural product biosynthetic enzymes. Microb Genomics 2019; 5:e000260 [View Article]
    [Google Scholar]
  8. O’Brien J, Wright GD. An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol 2011; 22:552–558 [View Article] [PubMed]
    [Google Scholar]
  9. Genilloud O. Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 2017; 34:1203–1232 [View Article] [PubMed]
    [Google Scholar]
  10. Zotchev SB. Marine actinomycetes as an emerging resource for the drug development pipelines. J Biotechnol 2012; 158:168–175 [View Article] [PubMed]
    [Google Scholar]
  11. Monciardini P, Iorio M, Maffioli S, Sosio M, Donadio S. Discovering new bioactive molecules from microbial sources. Microb Biotechnol 2014; 7:209–220 [View Article] [PubMed]
    [Google Scholar]
  12. Bérdy J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J Antibiot 2012; 65:385–395 [View Article] [PubMed]
    [Google Scholar]
  13. de Lima Procópio RE, da Silva IR, Martins MK, de Azevedo JL, de Araújo JM. Antibiotics produced by Streptomyces. Braz J Infect Dis 2012; 16:466–471 [View Article]
    [Google Scholar]
  14. Rocha-Martin J, Harrington C, Dobson ADW, O’Gara F. Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Mar Drugs 2014; 12:3516–3559 [View Article] [PubMed]
    [Google Scholar]
  15. Tiwari K, Gupta RK. Rare actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol 2012; 32:108–132 [View Article] [PubMed]
    [Google Scholar]
  16. Subramani R, Aalbersberg W. Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery. Appl Microbiol Biotechnol 2013; 97:9291–9321 [View Article] [PubMed]
    [Google Scholar]
  17. Schorn MA, Alanjary MM, Aguinaldo K, Korobeynikov A, Podell S et al. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters. Microbiology (Reading) 2016; 162:2075–2086 [View Article] [PubMed]
    [Google Scholar]
  18. Larkin MJ, Kulakov LA, Allen CC. Biodegradation and Rhodococcus – masters of catabolic versatility. Curr Opin Biotechnol 2005; 16:282–290 [View Article] [PubMed]
    [Google Scholar]
  19. Larkin MJ, Kulakov LA, Allen CCR. Biodegradation by members of the genus Rhodococcus: biochemistry, physiology, and genetic adaptation. Adv Appl Microbiol 2006; 59:1–29 [View Article] [PubMed]
    [Google Scholar]
  20. Cappelletti M, Presentato A, Piacenza E, Firrincieli A, Turner RJ et al. Biotechnology of Rhodococcus for the production of valuable compounds. Appl Microbiol Biotechnol 2020; 104:8567–8594 [View Article] [PubMed]
    [Google Scholar]
  21. Orro A, Cappelletti M, D’Ursi P, Milanesi L, Di Canito A et al. Genome and phenotype microarray analyses of Rhodococcus sp. Bcp1 and Rhodococcus opacus R7: genetic determinants and metabolic abilities with environmental relevance. PLoS One 2015; 10:e0139467 [View Article]
    [Google Scholar]
  22. Cappelletti M, Fedi S, Zampolli J, Di Canito A, D’Ursi P et al. Phenotype microarray analysis may unravel genetic determinants of the stress response by Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7. Res Microbiol 2016; 167:766–773 [View Article] [PubMed]
    [Google Scholar]
  23. Ceniceros A, Dijkhuizen L, Petrusma M, Medema MH. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genomics 2017; 18:593 [View Article] [PubMed]
    [Google Scholar]
  24. Rigali S, Anderssen S, Naômé A, van Wezel GP. Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery. Biochem Pharmacol 2018; 153:24–34 [View Article] [PubMed]
    [Google Scholar]
  25. Bosello M, Zeyadi M, Kraas FI, Linne U, Xie X et al. Structural characterization of the heterobactin siderophores from Rhodococcus erythropolis PR4 and elucidation of their biosynthetic machinery. J Nat Prod 2013; 76:2282–2290 [View Article] [PubMed]
    [Google Scholar]
  26. Miranda-CasoLuengo R, Coulson GB, Miranda-Casoluengo A, Vázquez-Boland JA, Hondalus MK et al. The hydroxamate siderophore rhequichelin is required for virulence of the pathogenic actinomycete Rhodococcus equi. Infect Immun 2012; 80:4106–4114 [View Article] [PubMed]
    [Google Scholar]
  27. Bosello M, Robbel L, Linne U, Xie X, Marahiel MA. Biosynthesis of the siderophore rhodochelin requires the coordinated expression of three independent gene clusters in Rhodococcus jostii RHA1. J Am Chem Soc 2011; 133:4587–4595 [View Article] [PubMed]
    [Google Scholar]
  28. Habib S, Ahmad SA, Wan Johari WL, Abd Shukor MY, Alias SA et al. Production of lipopeptide biosurfactant by a hydrocarbon-degrading Antarctic Rhodococcus. Int J Mol Sci 2020; 21:6138 [View Article]
    [Google Scholar]
  29. Chu J, Vila-Farres X, Inoyama D, Ternei M, Cohen LJ et al. Discovery of MRSA active antibiotics using primary sequence from the human microbiome. Nat Chem Biol 2016; 12:1004–1006 [View Article] [PubMed]
    [Google Scholar]
  30. Chiba H, Agematu H, Kaneto R, Terasawa T, Sakai K et al. Rhodopeptins (Mer-N1033), novel cyclic tetrapeptides with antifungal activity from Rhodococcus sp. J Antibiot 1999; 52:695–699
    [Google Scholar]
  31. Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S et al. Lariatins, antimycobacterial peptides produced by Rhodococcus sp. K01-B0171, have a lasso structure. J Am Chem Soc 2006; 128:7486–7491 [View Article] [PubMed]
    [Google Scholar]
  32. Kitagawa W, Tamura T. A quinoline antibiotic from Rhodococcus erythropolis JCM 6824. J Antibiot 2008; 61:680–682 [View Article] [PubMed]
    [Google Scholar]
  33. Nachtigall J, Schneider K, Nicholson G, Goodfellow M, Zinecker H et al. Two new aurachins from Rhodococcus sp. Acta 2259. J Antibiot 2010; 63:567–569 [View Article] [PubMed]
    [Google Scholar]
  34. Undabarrena A, Salvà-Serra F, Jaén-Luchoro D, Castro-Nallar E, Mendez KN et al. Complete genome sequence of the marine Rhodococcus sp. H-CA8f isolated from Comau fjord in Northern Patagonia, Chile. Mar Genomics 2018; 40:13–17 [View Article] [PubMed]
    [Google Scholar]
  35. Undabarrena A, Beltrametti F, Claverías FP, González M, Moore ERB et al. Exploring the diversity and antimicrobial potential of marine actinobacteria from the Comau fjord in Northern Patagonia, Chile. Front Microbiol 2016; 7:1135 [View Article]
    [Google Scholar]
  36. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  37. Savory EA, Fuller SL, Weisberg AJ, Thomas WJ, Gordon MI et al. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. eLife 2017; 6:e30925 [View Article] [PubMed]
    [Google Scholar]
  38. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2015; 8:12–24
    [Google Scholar]
  39. Sharrar AM, Crits-Christoph A, Méheust R, Diamond S, Starr EP et al. Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. mBio 2020; 11:e00416-20 [View Article]
    [Google Scholar]
  40. Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun 2016; 7:13219 [View Article] [PubMed]
    [Google Scholar]
  41. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ et al. antiSMASH 4.0–improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017; 45:W36–W41 [View Article] [PubMed]
    [Google Scholar]
  42. Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH et al. A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol 2020; 16:60–68 [View Article] [PubMed]
    [Google Scholar]
  43. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015; 16:157 [View Article] [PubMed]
    [Google Scholar]
  44. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article] [PubMed]
    [Google Scholar]
  45. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  46. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  47. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  48. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  49. Huson DH, Richter DC, Rausch C, Dezulian T, Franz M et al. Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics 2007; 8:460 [View Article] [PubMed]
    [Google Scholar]
  50. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  51. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001; 17:754–755 [View Article] [PubMed]
    [Google Scholar]
  52. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19:1572–1574 [View Article] [PubMed]
    [Google Scholar]
  53. Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 2017; 34:772–773 [View Article] [PubMed]
    [Google Scholar]
  54. Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci 1981; 53:131–147 [View Article]
    [Google Scholar]
  55. Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics 2011; 27:592–593 [View Article] [PubMed]
    [Google Scholar]
  56. Estabrook GF, McMorris FR, Meacham CA. Comparison of undirected phylogenetic trees based on subtrees of four evolutionary units. Syst Zool 1985; 34:193–200 [View Article]
    [Google Scholar]
  57. Goluch T, Bogdanowicz D, Giaro K, Price S. Visual TreeCmp: comprehensive comparison of phylogenetic trees on the web. Methods Ecol Evol 2020; 11:494–499 [View Article]
    [Google Scholar]
  58. Fruchterman TMJ, Reingold EM. Graph drawing by force-directed placement. Softw Pract Exp 1991; 21:1129–1164
    [Google Scholar]
  59. Hu Y. Efficient high-quality force-directed graph drawing. Math J 2006; 10:35
    [Google Scholar]
  60. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks; 2009 https://gephi.org/publications/gephi-bastian-feb09.pdf
  61. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech Theory Exp 20082008:P10008
    [Google Scholar]
  62. Needham M, Hodler AE. Graph Algorithms: Practical Examples in Apache Spark and Neo4j Sebastopol, CA: O’Reilly Media; 2019
    [Google Scholar]
  63. Kolde R. Pheatmap: Pretty heatmaps; 2019 https://cran.r-project.org/web/packages/pheatmap/index.html accessed 04 Jan 2019
  64. Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers. Methods Ecol Evol 2016; 7:1451–1456
    [Google Scholar]
  65. Chase AB, Sweeney D, Muskat MN, Guillén-Matus D, Jensen PR. Vertical inheritance governs biosynthetic gene cluster evolution and chemical diversification. bioRxiv 2021 [View Article]
    [Google Scholar]
  66. Clarke KR. Non-parametric multivariate analyses of changes in community structure. Austral Ecol 1993; 18:117–143 [View Article]
    [Google Scholar]
  67. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  68. Röttig M, Medema MH, Blin K, Weber T, Rausch C et al. NRPSpredictor2 – a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 2011; 39:W362–7 [View Article]
    [Google Scholar]
  69. Baranašić D, Zucko J, Diminic J, Gacesa R, Long PF et al. Predicting substrate specificity of adenylation domains of nonribosomal peptide synthetases and other protein properties by latent semantic indexing. J Ind Microbiol Biotechnol 2014; 41:461–467 [View Article] [PubMed]
    [Google Scholar]
  70. Prieto C, García-Estrada C, Lorenzana D, Martín JF. NRPSsp: non-ribosomal peptide synthase substrate predictor. Bioinformatics 2012; 28:426–427 [View Article] [PubMed]
    [Google Scholar]
  71. Skinnider MA, Merwin NJ, Johnston CW, Magarvey NA. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res 2017; 45:W49–W54 [View Article] [PubMed]
    [Google Scholar]
  72. Fernández E, Weißbach U, Reillo CS, Braña AF, Méndez C et al. Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J Bacteriol 1998; 180:4929–4937 [View Article]
    [Google Scholar]
  73. Malmierca MG, González-Montes L, Pérez-Victoria I, Sialer C, Braña AF et al. Searching for glycosylated natural products in actinomycetes and identification of novel Macrolactams and Angucyclines. Front Microbiol 2018; 9:39 [View Article]
    [Google Scholar]
  74. Cumsille A, Undabarrena A, González V, Claverías F, Rojas C et al. Biodiversity of actinobacteria from the South Pacific and the assessment of Streptomyces chemical diversity with metabolic profiling. Mar Drugs 2017; 15:286 [View Article]
    [Google Scholar]
  75. Valenzuela M, Besoain X, Durand K, Cesbron S, Fuentes S et al. Clavibacter michiganensis subsp. michiganensis strains from central Chile exhibit low genetic diversity and sequence types match strains in other parts of the world. Plant Pathol 2018; 67:1944–1954 [View Article]
    [Google Scholar]
  76. Busch J, Agarwal V, Schorn M, Machado H, Moore BS et al. Diversity and distribution of the bmp gene cluster and its polybrominated products in the genus Pseudoalteromonas. Environ Microbiol 2019; 21:1575–1585 [View Article] [PubMed]
    [Google Scholar]
  77. van der Hooft JJJ, Mohimani H, Bauermeister A, Dorrestein PC, Duncan KR et al. Linking genomics and metabolomics to chart specialized metabolic diversity. Chem Soc Rev 2020; 49:3297–3314
    [Google Scholar]
  78. Blin K, Medema MH, Kottmann R, Lee SY, Weber T. The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 2017; 45:D555–D559 [View Article] [PubMed]
    [Google Scholar]
  79. Blin K, Andreu P, de los Santos ELC, Del Carratore F, Lee SY et al. The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 2019; 47:D625–D630
    [Google Scholar]
  80. Blin K, Kim HU, Medema MH, Weber T. Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief Bioinform 2019; 20:1103–1113 [View Article] [PubMed]
    [Google Scholar]
  81. Blin K, Shaw S, Kautsar SA, Medema MH, Weber T. The antiSMASH database version 3: increased taxonomic coverage and new query features for modular enzymes. Nucleic Acids Res 2021; 49:D639–D643 [View Article] [PubMed]
    [Google Scholar]
  82. Sangal V, Goodfellow M, Jones AL, Seviour RJ, Sutcliffe IC. Refined systematics of the genus Rhodococcus based on whole genome analyses. In Alvarez H. ed Biology of Rhodococcus vol 16 Cham: Springer International Publishing; 2019 pp 1–21
    [Google Scholar]
  83. Anastasi E, MacArthur I, Scortti M, Alvarez S, Giguère S et al. Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol 2016; 8:3140–3148 [View Article] [PubMed]
    [Google Scholar]
  84. Creason AL, Davis EWI, Putnam ML, Vandeputte OM, Chang JH. Use of whole genome sequences to develop a molecular phylogenetic framework for Rhodococcus fascians and the Rhodococcus genus. Front Plant Sci 2014; 5:00406 [View Article]
    [Google Scholar]
  85. Komukai-Nakamura S, Sugiura K, Yamauchi-Inomata Y, Toki H, Venkateswaran K et al. Construction of bacterial consortia that degrade Arabian light crude oil. J Ferment Bioeng 1996; 82:570–574 [View Article]
    [Google Scholar]
  86. McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A 2006; 103:15582–15587 [View Article] [PubMed]
    [Google Scholar]
  87. Moiseeva OV, Solyanikova IP, Kaschabek SR, Gröning J, Thiel M et al. A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence. J Bacteriol 2002; 184:5282–5292 [View Article] [PubMed]
    [Google Scholar]
  88. Doroghazi JR, Metcalf WW. Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes. BMC Genomics 2013; 14:611 [View Article] [PubMed]
    [Google Scholar]
  89. Männle D, McKinnie SMK, Mantri SS, Steinke K, Lu Z et al. Comparative genomics and metabolomics in the genus Nocardia. mSystems 2020; 5:e00120-25 [View Article]
    [Google Scholar]
  90. Graf R, Anzali S, Buenger J, Pfluecker F, Driller H. The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol 2008; 26:326–333 [View Article] [PubMed]
    [Google Scholar]
  91. Du Y-L, Shen X-L, Yu P, Bai L-Q, Li Y-Q. Gamma-butyrolactone regulatory system of Streptomyces chattanoogensis links nutrient utilization, metabolism, and development. Appl Environ Microbiol 2011; 77:8415–8426
    [Google Scholar]
  92. Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res 2020; 48:D454–D458 [View Article] [PubMed]
    [Google Scholar]
  93. Kraemer SM. Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 2004; 66:3–18
    [Google Scholar]
  94. Doroghazi JR, Albright JC, Goering AW, Ju K-S, Haines RR et al. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol 2014; 10:963–968 [View Article]
    [Google Scholar]
  95. Reitz ZL, Hardy CD, Suk J, Bouvet J, Butler A. Genomic analysis of siderophore β-hydroxylases reveals divergent stereocontrol and expands the condensation domain family. Proc Natl Acad Sci U S A 2019; 116:19805–19814 [View Article] [PubMed]
    [Google Scholar]
  96. Adamek M, Alanjary M, Sales-Ortells H, Goodfellow M, Bull AT et al. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics 2018; 19:426 [View Article] [PubMed]
    [Google Scholar]
  97. Chevrette MG, Carlos-Shanley C, Louie KB, Bowen BP, Northen TR et al. Taxonomic and metabolic incongruence in the ancient genus Streptomyces. Front Microbiol 2019; 10:2170 [View Article]
    [Google Scholar]
  98. Chevrette MG, Carlson CM, Ortega HE, Thomas C, Ananiev GE et al. The antimicrobial potential of Streptomyces from insect microbiomes. Nat Commun 2019; 10:516 [View Article]
    [Google Scholar]
  99. Caldera EJ, Chevrette MG, McDonald BR, Currie CR. Local adaptation of bacterial symbionts within a geographic mosaic of antibiotic coevolution. Appl Environ Microbiol 2019; 85:e01580-19 [View Article]
    [Google Scholar]
  100. Jensen PR, Mafnas C. Biogeography of the marine actinomycete Salinispora. Environ Microbiol 2006; 8:1881–1888 [View Article] [PubMed]
    [Google Scholar]
  101. Letzel AC, Li J, Amos GCA, Millán-Aguiñaga N, Ginigini J et al. Genomic insights into specialized metabolism in the marine actinomycete Salinispora. Environ Microbiol 2017; 19:3660–3673 [View Article] [PubMed]
    [Google Scholar]
  102. Cruz-Morales P, Ramos-Aboites HE, Licona-Cassani C, Selem-Mójica N, Mejía-Ponce PM et al. Actinobacteria phylogenomics, selective isolation from an iron oligotrophic environment and siderophore functional characterization, unveil new desferrioxamine traits. FEMS Microbiol Ecol 2017; 93:fix086 [View Article]
    [Google Scholar]
  103. Gutiérrez-García K, Neira-González A, Pérez-Gutiérrez RM, Granados-Ramírez G, Zarraga R et al. Phylogenomics of 2,4-diacetylphloroglucinol-producing Pseudomonas and novel antiglycation endophytes from Piper auritum. J Nat Prod 2017; 80:1955–1963 [View Article] [PubMed]
    [Google Scholar]
  104. Juárez-Vázquez AL, Edirisinghe JN, Verduzco-Castro EA, Michalska K, Wu C et al. Evolution of substrate specificity in a retained enzyme driven by gene loss. eLife 2017; 6:e22679 [View Article] [PubMed]
    [Google Scholar]
  105. Adamek M, Alanjary M, Ziemert N. Applied evolution: phylogeny-based approaches in natural products research. Nat Prod Rep 2019; 36:1295–1312 [View Article] [PubMed]
    [Google Scholar]
  106. Chevrette MG, Gutiérrez-García K, Selem-Mojica N, Aguilar-Martínez C, Yañez-Olvera A et al. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat Prod Rep 2020; 37:566–599 [View Article]
    [Google Scholar]
  107. He J, Magarvey N, Piraee M, Vining LC. The gene cluster for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230 includes novel shikimate pathway homologues and a monomodular non-ribosomal peptide synthetase gene. Microbiology (Reading) 2001; 147:2817–2829 [View Article] [PubMed]
    [Google Scholar]
  108. Martinet L, Naômé A, Baiwir D, De Pauw E, Mazzucchelli G et al. On the risks of phylogeny-based strain prioritization for drug discovery: Streptomyces lunaelactis as a case study. Biomolecules 2020; 10:1027 [View Article]
    [Google Scholar]
  109. Bushley KE, Turgeon BG. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol 2010; 10:26 [View Article] [PubMed]
    [Google Scholar]
  110. Suzuki T, Honda H, Katsumata R. Production of antibacterial compounds analogous to chloramphenicol by a n-paraffin-grown bacterium. Agricultural and Biological Chemistry 2014; 36:2223–2228 [View Article]
    [Google Scholar]
  111. Nakano H, Tomita F, Yamaguchi K, Nagashima M, Suzuki T. Corynecin (chloramphenicol analogs) fermentation studies: selective production of corynecin I by Corynebacterium hydrocarboclastus grown on acetate. Biotechnol Bioeng 1977; 19:1009–1018 [View Article] [PubMed]
    [Google Scholar]
  112. Calcott MJ, Ackerley DF. Portability of the thiolation domain in recombinant pyoverdine non-ribosomal peptide synthetases. BMC Microbiol 2015; 15:162 [View Article] [PubMed]
    [Google Scholar]
  113. Baunach M, Chowdhury S, Stallforth P, Dittmann E. The landscape of recombination events that create nonribosomal peptide diversity. Mol Biol Evol 2021; 38:2116–2130 [View Article]
    [Google Scholar]
  114. Ali H, Ries MI, Lankhorst PP, van der Hoeven RAM, Schouten OL et al. A non-canonical NRPS is involved in the synthesis of fungisporin and related hydrophobic cyclic tetrapeptides in Penicillium chrysogenum. PLoS One 2014; 9:e98212
    [Google Scholar]
  115. Motz HD, Schwarzer D, Marahiel MA. Ways of assembling complex natural products on modular nonribosomal peptide synthetases. ChemBioChem 2002; 3:490–504 [View Article] [PubMed]
    [Google Scholar]
  116. Mirzaei H, Regnier F. Enhancing electrospray ionization efficiency of peptides by derivatization. Anal Chem 2006; 78:4175–4183 [View Article] [PubMed]
    [Google Scholar]
  117. Brodbelt JS. Ion activation methods for peptides and proteins. Anal Chem 2016; 88:30–51 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000621
Loading
/content/journal/mgen/10.1099/mgen.0.000621
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error