1887

Abstract

Located at the tip of cell surface glycoconjugates, sialic acids are at the forefront of host–microbe interactions and, being easily liberated by sialidase enzymes, are used as metabolites by numerous bacteria, particularly by pathogens and commensals living on or near diverse mucosal surfaces. These bacteria rely on specific transporters for the acquisition of host-derived sialic acids. Here, we present the first comprehensive genomic and phylogenetic analysis of bacterial sialic acid transporters, leading to the identification of multiple new families and subfamilies. Our phylogenetic analysis suggests that sialic acid-specific transport has evolved independently at least eight times during the evolution of bacteria, from within four of the major families/superfamilies of bacterial transporters, and we propose a robust classification scheme to bring together a myriad of different nomenclatures that exist to date. The new transporters discovered occur in diverse bacteria, including , , and , many of which are species that have not been previously recognized to have sialometabolic capacities. Two subfamilies of transporters stand out in being fused to the sialic acid mutarotase enzyme, NanM, and these transporter fusions are enriched in bacteria present in gut microbial communities. Our analysis supports the increasing experimental evidence that competition for host-derived sialic acid is a key phenotype for successful colonization of complex mucosal microbiomes, such that a strong evolutionary selection has occurred for the emergence of sialic acid specificity within existing transporter architectures.

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/P008895/1)
    • Principle Award Recipient: NathalieJuge
  • Biotechnology and Biological Sciences Research Council (Award BB/R012490/1)
    • Principle Award Recipient: NathalieJuge
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000614
2021-06-29
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/6/mgen000614.html?itemId=/content/journal/mgen/10.1099/mgen.0.000614&mimeType=html&fmt=ahah

References

  1. Varki A. Uniquely human evolution of sialic acid genetics and biology. Proc Natl Acad Sci USA 2010; 107:8939–8946
    [Google Scholar]
  2. Angata T, Varki A. Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective. Chem Rev 2002; 102:439–469 [View Article] [PubMed]
    [Google Scholar]
  3. Ghosh S. Sialic acid and biology of life: an introduction. In Sialic Acids and Sialoglycoconjugates in the Biology of Life, Health and Disease Cambridge, MA: Academic Press; 2020 pp 1–61 [View Article]
    [Google Scholar]
  4. Vimr ER. Unified theory of bacterial sialometabolism: how and why bacteria metabolize host sialic acids. ISRN Microbiol 2013; 2013:816713 [View Article] [PubMed]
    [Google Scholar]
  5. Haines-Menges BL, Whitaker WB, Lubin JB, Boyd EF. Host sialic acids: a delicacy for the pathogen with discerning taste. Microbiol Spectr 2015; 3:MBP-0005-2014 [View Article]
    [Google Scholar]
  6. Matrosovich M, Herrler G, Klenk HD. Sialic acid receptors of viruses. Top Curr Chem 2015; 367:1–28 [View Article]
    [Google Scholar]
  7. Li W, Hulswit RJG, Widjaja I, Raj VS, McBride R et al. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc Natl Acad Sci USA 2017; 114:E8508–E8517 [View Article] [PubMed]
    [Google Scholar]
  8. Severi E, Hood D, Thomas G. Sialic acid utilization by bacterial pathogens. Microbiology 2007; 153:2817–2822 [View Article] [PubMed]
    [Google Scholar]
  9. McDonald ND, Lubin JB, Chowdhury N, Boyd EF. Host-derived sialic acids are an important nutrient source required for optimal bacterial fitness in vivo. mBio 2016; 7:e02237–15 [View Article]
    [Google Scholar]
  10. North RA, Horne CR, Davies JS, Remus DM, Muscroft-Taylor AC et al. “Just a spoonful of sugar…”: import of sialic acid across bacterial cell membranes. Biophys Rev 2018; 10:219–227 [View Article] [PubMed]
    [Google Scholar]
  11. McDonald ND, Boyd EF. Structural and biosynthetic diversity of nonulosonic acids (Nulos) that decorate surface structures in bacteria. Trends Microbiol 2021; 29:142–157 [View Article] [PubMed]
    [Google Scholar]
  12. Thomas GH. Sialic acid acquisition in bacteria-one substrate, many transporters. Biochem Soc Trans 2016; 44:760–765 [View Article] [PubMed]
    [Google Scholar]
  13. Almagro-Moreno S, Boyd EF. Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol Biol 2009; 9:118 [View Article] [PubMed]
    [Google Scholar]
  14. Bell A, Brunt J, Crost E, Vaux L, Nepravishta R et al. Elucidation of a sialic acid metabolism pathway in mucus-foraging Ruminococcus gnavus unravels mechanisms of bacterial adaptation to the gut. Nat Microbiol 4:2393–2404 [View Article] [PubMed]
    [Google Scholar]
  15. Severi E, Randle G, Kivlin P, Whitfield K, Young R et al. Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter. Mol Microbiol 2005; 58:1173–1185 [View Article] [PubMed]
    [Google Scholar]
  16. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 2013; 502:96–99
    [Google Scholar]
  17. Marion C, Burnaugh AM, Woodiga SA, King SJ. Sialic acid transport contributes to pneumococcal colonization. Infect Immun 2011; 79:1262–1269 [View Article] [PubMed]
    [Google Scholar]
  18. Huang Y-L, Chassard C, Hausmann M, Von Itzstein M, Hennet T. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat Commun 2015; 6:8141
    [Google Scholar]
  19. Agarwal K, Robinson LS, Aggarwal S, Foster LR, Hernandez-Leyva A et al. Glycan cross-feeding supports mutualism between Fusobacterium and the vaginal microbiota. PLoS Biol 2020; 18:e3000788 [View Article] [PubMed]
    [Google Scholar]
  20. Stafford G, Roy S, Honma K, Sharma A. Sialic acid, periodontal pathogens and Tannerella forsythia: stick around and enjoy the feast!. Mol Oral Microbiol 2012; 27:11–22 [View Article] [PubMed]
    [Google Scholar]
  21. Hopkins AP, Hawkhead JA, Thomas GH. Transport and catabolism of the sialic acids N-glycolylneuraminic acid and 3-keto-3-deoxy-D-glycero-D-galactonononic acid by Escherichia coli K-12. FEMS Microbiol Lett 2013; 347:14–22 [View Article] [PubMed]
    [Google Scholar]
  22. North RA, Wahlgren WY, Remus DM, Scalise M, Kessans SA et al. The sodium sialic acid symporter from Staphylococcus aureus has altered substrate specificity. Front Chem 2018; 6:233 [View Article]
    [Google Scholar]
  23. Setty TG, Mowers JC, Hobbs AG, Maiya SP, Syed S et al. Molecular characterization of the interaction of sialic acid with the periplasmic binding protein from Haemophilus ducreyi. J Biol Chem 2018; 293:20073–20084
    [Google Scholar]
  24. Saha S, Coady A, Sasmal A, Kawanishi K, Choudhury B et al. Exploring the impact of ketodeoxynonulosonic acid in host-pathogen interactions using uptake and surface display by nontypeable Haemophilus influenzae. mBio 2021; 12:e03226-20 [View Article]
    [Google Scholar]
  25. Vimr ER, Troy FA. Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli. J Bacteriol 1985; 164:845–853 [View Article] [PubMed]
    [Google Scholar]
  26. Martinez J, Steenbergen S, Vimr E. Derived structure of the putative sialic acid transporter from Escherichia coli predicts a novel sugar permease domain. J Bacteriol 1995; 177:6005–6010 [View Article] [PubMed]
    [Google Scholar]
  27. Plumbridge J, Vimr E. Convergent pathways for utilization of the amino sugars. Microbiology 1999; 181:47–54
    [Google Scholar]
  28. Mulligan C, Leech AP, Kelly DJ, Thomas GH. The membrane proteins SiaQ and SiaM form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777-1779) from Vibrio cholerae. . J Biol Chem 2012; 287:3598–3608 [View Article] [PubMed]
    [Google Scholar]
  29. Severi E, Hosie AHF, Hawkhead JA, Thomas GH. Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters. FEMS Microbiol Lett 2010; 304:47–54 [View Article] [PubMed]
    [Google Scholar]
  30. Brigham C, Caughlan R, Gallegos R, Dallas MB, Godoy VG et al. Sialic acid (N-acetyl neuraminic acid) utilization by Bacteroides fragilis requires a novel N-acetyl Mannosamine epimerase. J Bacteriol 2009; 191:3629–3638 [View Article] [PubMed]
    [Google Scholar]
  31. Roy S, Douglas CWI, Stafford GP. A novel sialic acid utilization and uptake system in the periodontal pathogen Tannerella forsythia. J Bacteriol 2010; 192:2285–2293 [View Article] [PubMed]
    [Google Scholar]
  32. Allen S, Zaleski A, Johnston JW, Gibson BW, Apicella MA. Novel sialic acid transporter of Haemophilus influenzae. Infect Immun 2005; 73:5291–5300 [View Article] [PubMed]
    [Google Scholar]
  33. Chowdhury N, Norris J, McAlister E, Lau SYK, Thomas GH et al. The VC1777–VC1779 proteins are members of a sialic acid-specific subfamily of TRAP transporters (SiaPQM) and constitute the sole route of sialic acid uptake in the human pathogen Vibrio cholerae. Microbiology 2012; 158:2158–2167 [View Article]
    [Google Scholar]
  34. Lubin JB, Kingston JJ, Chowdhury N, Boyd EF. Sialic acid catabolism and transport gene clusters are lineage specific in Vibrio vulnificus. Appl Environ Microbiol 2012; 78:3407–3415 [View Article] [PubMed]
    [Google Scholar]
  35. Müller A, Severi E, Mulligan C, Watts AG, Kelly DJ et al. Conservation of structure and mechanism in primary and secondary transporters exemplified by SiaP, a sialic acid binding virulence factor from Haemophilus influenzae. J Biol Chem 2006; 281:22212–22222 [View Article] [PubMed]
    [Google Scholar]
  36. Mulligan C, Geertsma ER, Severi E, Kelly DJ, Poolman B et al. The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter. Proc Natl Acad Sci USA 2009; 106:1778–1783 [View Article] [PubMed]
    [Google Scholar]
  37. Rosa LT, Bianconi ME, Thomas GH, Kelly DJ. Tripartite ATP-independent periplasmic (TRAP) transporters and tripartite tricarboxylate transporters (TTT): from uptake to pathogenicity. Front Cell Infect Microbiol 2018; 8:33 [View Article]
    [Google Scholar]
  38. Post DMB, Mungur R, Gibson BW, Munson RS. Identification of a novel sialic acid transporter in Haemophilus ducreyi. Infect Immun 2005; 73:6727–6735 [View Article] [PubMed]
    [Google Scholar]
  39. Gruteser N, Marin K, Krämer R, Thomas GH. Sialic acid utilization by the soil bacterium Corynebacterium glutamicum. FEMS Microbiol Lett 2012; 336:131–138 [View Article] [PubMed]
    [Google Scholar]
  40. Sela DA, Li Y, Lerno L, Wu S, Marcobal AM et al. An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J Biol Chem 2011; 286:11909–11918 [View Article] [PubMed]
    [Google Scholar]
  41. Fischer M, Hopkins AP, Severi E, Hawkhead J, Bawdon D et al. Tripartite ATP-independent periplasmic (TRAP) transporters use an arginine-mediated selectivity filter for high affinity substrate binding. J Biol Chem 2015; 290:27113–27123 [View Article] [PubMed]
    [Google Scholar]
  42. Gangi Setty T, Cho C, Govindappa S, Apicella MA, Ramaswamy S. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site. Acta Crystallogr D Biol Crystallogr 2014; 70:1801–1811 [View Article] [PubMed]
    [Google Scholar]
  43. Johnston JW, Coussens NP, Allen S, Houtman JCD, Turner KH et al. Characterization of the N-acetyl-5-neuraminic acid-binding site of the extracytoplasmic solute receptor (SiaP) of nontypeable Haemophilus influenzae strain 2019. J Biol Chem 2008; 283:855–865 [View Article] [PubMed]
    [Google Scholar]
  44. Marion C, Aten AE, Woodiga SA, King SJ. Identification of an ATPase, MsmK, which energizes multiple carbohydrate ABC transporters in Streptococcus pneumoniae. Infect Immun 2011; 79:4193–4200 [View Article] [PubMed]
    [Google Scholar]
  45. Hentrich K, Löfling J, Pathak A, Nizet V, Varki A et al. Streptococcus pneumoniae senses a human-like sialic acid profile via the response regulator CIAR. Cell Host Microbe 2016; 20:307–317 [View Article] [PubMed]
    [Google Scholar]
  46. Afzal M, Shafeeq S, Ahmed H, Kuipers OP. Sialic acid-mediated gene expression in Streptococcus pneumoniae and role of NanR as a transcriptional activator of the nan gene cluster. Appl Environ Microbiol 2015; 81:3121–3131 [View Article] [PubMed]
    [Google Scholar]
  47. Wahlgren WY, Dunevall E, North RA, Paz A, Scalise M et al. Substrate-bound outward-open structure of a Na+-coupled sialic acid symporter reveals a new Na+ site. Nat Commun 2018; 9:1753 [View Article] [PubMed]
    [Google Scholar]
  48. Anba-Mondoloni J, Chaillou S, Zagorec M, Champomier-Vergés MC. Catabolism of N-acetylneuraminic acid, a fitness function of the food-borne lactic acid bacterium Lactobacillus sakei, involves two newly characterized proteins. Appl Environ Microbiol 2013; 79:2012–2018 [View Article] [PubMed]
    [Google Scholar]
  49. Crost EH, Tailford LE, Monestier M, Swarbreck D, Henrissat B et al. The mucin-degradation strategy of Ruminococcus gnavus: the importance of intramolecular trans-sialidases. Gut Microbes 2016; 7:302–312 [View Article] [PubMed]
    [Google Scholar]
  50. Tailford LE, Owen CD, Walshaw J, Crost EH, Hardy-Goddard J et al. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat Commun 2015; 6:7624 [View Article] [PubMed]
    [Google Scholar]
  51. Bell A, Severi E, Lee M, Monaco S, Latousakis D et al. Uncovering a novel molecular mechanism for scavenging sialic acids in bacteria. J Biol Chem 2020; 295:13724–13736 [View Article] [PubMed]
    [Google Scholar]
  52. Kentache T, Thabault L, Peracchi A, Frédérick R, Bommer GT et al. The putative Escherichia coli dehydrogenase YJHC metabolises two dehydrated forms of n-acetylneuraminate produced by some sialidases. Biosci Rep 2020; 40:BSR20200927 [View Article]
    [Google Scholar]
  53. Almagro-Moreno S, Boyd EF. Bacterial catabolism of nonulosonic (sialic) acid and fitness in the gut. Gut Microbes 2010; 1:45–50 [View Article] [PubMed]
    [Google Scholar]
  54. Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 2001; 305:567–580 [View Article] [PubMed]
    [Google Scholar]
  55. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 2019; 37:420–423 [View Article] [PubMed]
    [Google Scholar]
  56. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008; 9:40 [View Article]
    [Google Scholar]
  57. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res 2018; 46:W296–W303 [View Article] [PubMed]
    [Google Scholar]
  58. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2-A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009; 25:1189–1191 [View Article] [PubMed]
    [Google Scholar]
  59. Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 2016; 44:W232–W235 [View Article]
    [Google Scholar]
  60. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  61. Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 2014; 42:320–324 [View Article]
    [Google Scholar]
  62. Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH. The major facilitator superfamily (MFS) revisited. FEBS J 2012; 279:2022–2035 [View Article] [PubMed]
    [Google Scholar]
  63. Wang SC, Davejan P, Hendargo KJ, Javadi-Razaz I, Chou A et al. Expansion of the Major Facilitator Superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes. Biochim Biophys Acta Biomembr 2020; 1862:183277 [View Article] [PubMed]
    [Google Scholar]
  64. Michaels DL, Moneypenny CG, Shama SM, Leibowitz JA, May MA et al. Sialidase and N-acetylneuraminate catabolism in nutrition of Mycoplasma alligatoris. Microbiol (United Kingdom) 2019; 165:662–667
    [Google Scholar]
  65. Owen CD, Lukacik P, Potter JA, Sleator O, Taylor GL et al. Streptococcus pneumoniae NanC: Structural insights into the specificity and mechanism of a sialidase that produces a sialidase inhibitor. J Biol Chem 2015; 290:27736–27748 [View Article] [PubMed]
    [Google Scholar]
  66. Xu G, Kiefel MJ, Wilson JC, Andrew PW, Oggioni MR et al. Three Streptococcus pneumoniae sialidases: Three different products. J Am Chem Soc 2011; 133:1718–1721 [View Article] [PubMed]
    [Google Scholar]
  67. Xiao K, Wang X, Yu H. Comparative studies of catalytic pathways for Streptococcus pneumoniae sialidases NanA, NanB and NanC. Sci Rep 2019; 9:2157 [View Article]
    [Google Scholar]
  68. Quintana-Hayashi MP, Venkatakrishnan V, Haesebrouck F, Lindén S. Role of sialic acid in brachyspira hyodysenteriae adhesion to pig colonic mucins. Infect Immun 2019; 87:1–11
    [Google Scholar]
  69. Mappley LJ, Black ML, AbuOun M, Darby AC, Woodward MJ et al. Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity. BMC Genomics 2012; 13:454 [View Article] [PubMed]
    [Google Scholar]
  70. Mirajkar NS, Phillips ND, La T, Hampson DJ, Gebhart CJ. Characterization and recognition of Brachyspira hampsonii sp. nov., novel intestinal spirochete that Is pathogenic to pigs. J Clin Microbiol 2016; 54:2942–2949 [View Article]
    [Google Scholar]
  71. Severi E, Müller A, Potts JR, Leech A, Williamson D et al. Sialic acid mutarotation is catalyzed by the Escherichia coli β-propeller protein YjhT. J Biol Chem 2008; 283:4841–4849 [View Article] [PubMed]
    [Google Scholar]
  72. Mally M, Shin H, Paroz C, Landmann R, Cornelis GR. Capnocytophaga canimorsus: A human pathogen feeding at the surface of epithelial cells and phagocytes. PLoS Pathog 2008; 4:e1000164 [View Article] [PubMed]
    [Google Scholar]
  73. Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Craig W et al. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun 2020; 11:1–21
    [Google Scholar]
  74. Kostopoulos I, Elzinga J, Ottman N, Klievink JT, Blijenberg B et al. Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro. Sci Rep 2020; 10:14330 [View Article] [PubMed]
    [Google Scholar]
  75. Yoneda S, Loeser B, Feng J, Dmytryk J, Qi F et al. Ubiquitous sialometabolism present among oral fusobacteria. PLoS One 2014; 9:e99263 [View Article] [PubMed]
    [Google Scholar]
  76. Egan M, O’Connell Motherway M, Ventura M, van Sinderen D. Metabolism of sialic acid by Bifidobacterium breve ucc2003. Appl Environ Microbiol 2014; 80:4414–4426 [View Article] [PubMed]
    [Google Scholar]
  77. Lewis WG, Robinson LS, Gilbert NM, Perry JC, Lewis AL. Degradation, foraging, and depletion of mucus sialoglycans by the vagina-adapted actinobacterium Gardnerella vaginalis. J Biol Chem 2013; 288:12067–12079 [View Article] [PubMed]
    [Google Scholar]
  78. Aisaka K, Uwajima T. Production of neuraminidase by Micromonospora viridifaciens. FEMS Microbiol Lett 1987; 44:289–291 [View Article]
    [Google Scholar]
  79. Gaskell A, Crennell S, Taylor G. The three domains of a bacterial sialidase: a β-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure 1995; 3:1197–1205 [View Article] [PubMed]
    [Google Scholar]
  80. Uhde A, Brühl N, Goldbeck O, Matano C, Gurow O et al. Transcription of sialic acid catabolism genes in Corynebacterium glutamicum is subject to catabolite repression and control by the transcriptional repressor NanR. J Bacteriol 2016; 198:2204–2218 [View Article] [PubMed]
    [Google Scholar]
  81. Pezzicoli A, Ruggiero P, Amerighi F, Telford JL, Soriani M. Exogenous sialic acid transport contributes to group B Streptococcus infection of mucosal surfaces. J Infect Dis 2012; 206:924–931 [View Article] [PubMed]
    [Google Scholar]
  82. Salah Ud-Din AIM, Roujeinikova A. Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea. Cell Mol Life Sci 2017; 74:3293–3303 [View Article] [PubMed]
    [Google Scholar]
  83. Stafford GP, Sharma A. Periodontal pathogen sialometabolic activity in periodontitis. In Emerging Therapies in Periodontics Cham: Springer; 2020 pp 187–194
    [Google Scholar]
  84. Kurniyati K, Zhang W, Zhang K, Li C. A surface-exposed neuraminidase affects complement resistance and virulence of the oral spirochaete Treponema denticola. Mol Microbiol 2013; 89:842–856 [View Article] [PubMed]
    [Google Scholar]
  85. Zhang Y, Gardina PJ, Kuebler AS, Kang HS, Christopher JA et al. Model of maltose-binding protein/chemoreceptor complex supports intrasubunit signaling mechanism. Proc Natl Acad Sci U S A 1999; 96:939–944 [View Article] [PubMed]
    [Google Scholar]
  86. Ravcheev DA, Thiele I. Comparative genomic analysis of the human gut microbiome reveals a broad distribution of metabolic pathways for the degradation of host-synthetized mucin glycans and utilization of mucin-derived monosaccharides. Front Genet 2017; 8:1 [View Article]
    [Google Scholar]
  87. Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 2011; 10:507–514 [View Article] [PubMed]
    [Google Scholar]
  88. Phansopa C, Roy S, Rafferty JB, Douglas CWI, Pandhal J et al. Structural and functional characterization of NanU, a novel high-affinity sialic acid-inducible binding protein of oral and gut-dwelling Bacteroidetes species. Biochem J 2014; 458:499–511 [View Article] [PubMed]
    [Google Scholar]
  89. Willson BJ, Chapman LN, Thomas GH. Evolutionary dynamics of membrane transporters and channels: enhancing function through fusion. Curr Opin Genet Dev 2019; 58–59:76–86
    [Google Scholar]
  90. Willson BJ, Dalzell L, Chapman LNM, Thomas GH. Enhanced functionalisation of major facilitator superfamily transporters via fusion of C-terminal protein domains is both extensive and varied in bacteria. Microbiol (United Kingdom) 2019; 165:419–424
    [Google Scholar]
  91. Kentache T, Thabault L, Deumer G, Haufroid V, Frédérick R et al. The metalloprotein YhcH is an anomerase providing N-acetylneuraminate aldolase with the open form of its substrate. J Biol Chem 2021; 296:100699 [View Article]
    [Google Scholar]
  92. Kalivoda KA, Steenbergen SM, Vimr ER. Control of the Escherichia coli sialoregulon by transcriptional repressor NanR. J Bacteriol 2013; 195:4689–4701 [View Article] [PubMed]
    [Google Scholar]
  93. Allen S, Zaleski A, Johnston JW, Gibson BW, Apicella MA. Novel sialic acid transporter of Haemophilus influenzae. Infect Immun 2005; 73:5291–5300 [View Article] [PubMed]
    [Google Scholar]
  94. Tatum FM, Tabatabai LB, Briggs RE. Sialic acid uptake is necessary for virulence of Pasteurella multocida in turkeys. Microb Pathog 2009; 46:337–344 [View Article] [PubMed]
    [Google Scholar]
  95. Steenbergen SM, Lichtensteiger CA, Caughlan R, Garfinkle J, Fuller TE et al. Sialic acid metabolism and systemic pasteurellosis. Infect Immun 2005; 73:1284–1294 [View Article] [PubMed]
    [Google Scholar]
  96. Robinson LS, Schwebke J, Lewis WG, Lewis AL. Identification and characterization of NanH2 and NanH3, enzymes responsible for sialidase activity in the vaginal bacterium Gardnerella vaginalis. J Biol Chem 2019; 294:5230–5245 [View Article] [PubMed]
    [Google Scholar]
  97. Johnston JW, Coussens NP, Allen S, Houtman JCD, Turner KH et al. Characterization of the N -Acetyl-5-neuraminic acid-binding site of the extracytoplasmic solute receptor (SiaP) of Nontypeable Haemophilus influenzae strain 2019. J Biol Chem 2008; 283:855–865 [View Article] [PubMed]
    [Google Scholar]
  98. Olson ME, King JM, Yahr TL, Horswill AR. Sialic acid catabolism in Staphylococcus aureus. J Bacteriol 2013; 195:1779–1788 [View Article] [PubMed]
    [Google Scholar]
  99. Gelfand MS, Rodionov DA. Comparative genomics and functional annotation of bacterial transporters. Phys Life Rev 2008; 5:22–49 [View Article]
    [Google Scholar]
  100. Saier MH, Reddy VS, Moreno-Hagelsieb G, Hendargo KJ, Zhang Y et al. The transporter classification database (TCDB): 2021 update. Nucleic Acids Res 2021; 49:D461–D467 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000614
Loading
/content/journal/mgen/10.1099/mgen.0.000614
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error