1887

Abstract

Members of the species have been shown to possess adaptive abilities to allow colonization of different mammalian hosts, including humans, primates and domesticated mammalian species, such as dogs, horses, cattle and pigs. To date, three subspecies have formally been recognized to belong to this bifidobacterial taxon, i.e. subsp. , subsp. and subsp. . Although subsp. is widely distributed in the human gut irrespective of host age, subsp. appears to play a significant role as a prominent member of the gut microbiota of breast-fed infants. Nevertheless, despite the considerable scientific relevance of these taxa and the vast body of genomic data now available, an accurate dissection of the genetic features that comprehensively characterize the species and its subspecies is still missing. In the current study, we employed 261 publicly available genome sequences, combined with those of 11 new isolates, to investigate genomic diversity of this taxon through comparative genomic and phylogenomic approaches. These analyses allowed us to highlight a remarkable intra-species genetic and physiological diversity. Notably, characterization of the genome content of members of subsp. subspecies suggested that this taxon may have acquired genetic features for increased competitiveness in the gut environment of suckling hosts. Furthermore, specific subsp. genomic features appear to be responsible for enhanced horizontal gene transfer (HGT) occurrences, underpinning an intriguing dedication toward acquisition of foreign DNA by HGT events.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000609
2021-07-28
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/7/mgen000609.html?itemId=/content/journal/mgen/10.1099/mgen.0.000609&mimeType=html&fmt=ahah

References

  1. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 1998; 95:6578–6583 [View Article] [PubMed]
    [Google Scholar]
  2. Donovan SM. Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health. Gut Microbes 2017; 8:75–81 [View Article] [PubMed]
    [Google Scholar]
  3. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312:1355–1359 [View Article] [PubMed]
    [Google Scholar]
  4. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005; 307:1915–1920 [View Article] [PubMed]
    [Google Scholar]
  5. Milani C, Duranti S, Bottacini F, Casey E, Turroni F et al. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev 2017; 81: [View Article] [PubMed]
    [Google Scholar]
  6. Turroni F, Milani C, Duranti S, Ferrario C, Lugli GA et al. Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cell Mol Life Sci 2018; 75:103–118 [View Article] [PubMed]
    [Google Scholar]
  7. Mancabelli L, Tarracchini C, Milani C, Lugli GA, Fontana F et al. Multi-population cohort meta-analysis of human intestinal microbiota in early life reveals the existence of infant community state types (Icsts. Comput Struct Biotechnol J 2020; 18:2480–2493 [View Article] [PubMed]
    [Google Scholar]
  8. Benno Y, Sawada K, Mitsuoka T. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol Immunol 1984; 28:975–986 [View Article] [PubMed]
    [Google Scholar]
  9. Hidalgo-Cantabrana C, Delgado S, Ruiz L, Ruas-Madiedo P, Sánchez B et al. Bifidobacteria and their health-promoting effects. Microbiol Spectr 2017; 5: [View Article] [PubMed]
    [Google Scholar]
  10. Ruiz L, Delgado S, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and their molecular communication with the immune system. Front Microbiol 2017; 8:2345 [View Article] [PubMed]
    [Google Scholar]
  11. Turroni F, Bottacini F, Foroni E, Mulder I, Kim JH et al. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci U S A 2010; 107:19514–19519 [View Article] [PubMed]
    [Google Scholar]
  12. Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr 2014; 34:143–169 [View Article] [PubMed]
    [Google Scholar]
  13. James K, Motherway MO, Bottacini F, van Sinderen D. Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways. Sci Rep 2016; 6:38560 [View Article] [PubMed]
    [Google Scholar]
  14. Lugli GA, Duranti S, Milani C, Mancabelli L, Turroni F et al. Investigating bifidobacteria and human milk oligosaccharide composition of lactating mothers. FEMS Microbiol Ecol 2020; 96: [View Article] [PubMed]
    [Google Scholar]
  15. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A 2008; 105:18964–18969 [View Article] [PubMed]
    [Google Scholar]
  16. Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L et al. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep 2015; 5:15782 [View Article] [PubMed]
    [Google Scholar]
  17. Duranti S, Lugli GA, Milani C, James K, Mancabelli L et al. Bifidobacterium bifidum and the infant gut microbiota: an intriguing case of microbe-host co-evolution. Environ Microbiol 2019; 21:3683–3695 [View Article] [PubMed]
    [Google Scholar]
  18. Milani C, Mancabelli L, Lugli GA, Duranti S, Turroni F et al. Exploring vertical transmission of bifidobacteria from mother to child. Appl Environ Microbiol 2015; 81:7078–7087 [View Article] [PubMed]
    [Google Scholar]
  19. Martin R, Jimenez E, Heilig H, Fernandez L, Marin ML et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 2009; 75:965–969 [View Article] [PubMed]
    [Google Scholar]
  20. Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol 2014; 16:2891–2904 [View Article] [PubMed]
    [Google Scholar]
  21. Milani C, Mangifesta M, Mancabelli L, Lugli GA, James K et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME J 2017; 11:2834–2847 [View Article] [PubMed]
    [Google Scholar]
  22. Mattarelli P, Bonaparte C, Pot B, Biavati B. Proposal to reclassify the three biotypes of Bifidobacterium longum as three subspecies: Bifidobacterium longum subsp. longum subsp. nov., Bifidobacterium longum subsp. infantis comb. nov. and Bifidobacterium longum subsp. suis comb. nov. Int J Syst Evol Microbiol 2008; 58:767–772 [View Article] [PubMed]
    [Google Scholar]
  23. Matteuzzi D, Crociani F, Zani G, Trovatelli LD. Bifidobacterium suis n. sp.: a new species of the genus Bifidobacterium isolated from pig feces. Z Allg Mikrobiol 1971; 11:387–395 [View Article] [PubMed]
    [Google Scholar]
  24. Odamaki T, Bottacini F, Kato K, Mitsuyama E, Yoshida K et al. Genomic diversity and distribution of Bifidobacterium longum subsp. longum across the human lifespan. Sci Rep 2018; 8:85 [View Article] [PubMed]
    [Google Scholar]
  25. Oki K, Akiyama T, Matsuda K, Gawad A, Makino H et al. Long-term colonization exceeding six years from early infancy of Bifidobacterium longum subsp. longum in human gut. BMC Microbiol 2018; 18:209 [View Article] [PubMed]
    [Google Scholar]
  26. Kitaoka M. Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides. Adv Nutr 2012; 3:422S–429S [View Article]
    [Google Scholar]
  27. Martin R, Makino H, Cetinyurek Yavuz A, Ben-Amor K, Roelofs M et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One 2016; 11:e0158498 [View Article]
    [Google Scholar]
  28. Zabel B, Yde CC, Roos P, Marcussen J, Jensen HM et al. Novel genes and metabolite trends in Bifidobacterium longum subsp. infantis Bi-26 metabolism of human milk Oligosaccharide 2’-fucosyllactose. Sci Rep 2019; 9:7983 [View Article] [PubMed]
    [Google Scholar]
  29. Lugli GA, Duranti S, Albert K, Mancabelli L, Napoli S et al. Unveiling genomic diversity among members of the species Bifidobacterium pseudolongum, a widely distributed gut commensal of the animal kingdom. Appl Environ Microbiol 2019; 85: [View Article]
    [Google Scholar]
  30. Matsuki T, Watanabe K, Tanaka R, Fukuda M, Oyaizu H. Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol 1999; 65:4506–4512 [View Article] [PubMed]
    [Google Scholar]
  31. Ventura M, Meylan V, Zink R. Identification and tracing of Bifidobacterium species by use of enterobacterial repetitive intergenic consensus sequences. Appl Environ Microbiol 2003; 69:4296–4301 [View Article] [PubMed]
    [Google Scholar]
  32. Lugli GA, Milani C, Mancabelli L, van Sinderen D, Ventura M. MEGAnnotator: a user-friendly pipeline for microbial genomes assembly and annotation. FEMS Microbiol Lett 2016; 363: [View Article] [PubMed]
    [Google Scholar]
  33. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  34. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  35. Zhao Y, Tang H, Ye Y. RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics 2012; 28:125–126 [View Article] [PubMed]
    [Google Scholar]
  36. Zhao Y, Wu J, Yang J, Sun S, Xiao J et al. PGAP: pan-genomes analysis pipeline. Bioinformatics 2012; 28:416–418 [View Article] [PubMed]
    [Google Scholar]
  37. Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 2002; 30:1575–1584 [View Article] [PubMed]
    [Google Scholar]
  38. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  39. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and clustal x version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  40. Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114
    [Google Scholar]
  41. Waack S, Keller O, Asper R, Brodag T, Damm C et al. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 2006; 7:142 [View Article] [PubMed]
    [Google Scholar]
  42. Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE--a database for DNA restriction and modification: Enzymes, genes and genomes. Nucleic Acids Res 2015; 43:299–D298
    [Google Scholar]
  43. Grissa I, Vergnaud G, Pourcel C. Crisprfinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007; 35:W52–7 [View Article]
    [Google Scholar]
  44. Thurston NE, Kerr JC. A nutritional knowledge questionnaire for the elderly. Can J Public Health 1983; 74:256–260 [PubMed]
    [Google Scholar]
  45. Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  46. Duranti S, Milani C, Lugli GA, Turroni F, Mancabelli L et al. Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum. Environ Microbiol 2015; 17:2515–2531 [View Article] [PubMed]
    [Google Scholar]
  47. Lugli GA, Tarracchini C, Alessandri G, Milani C, Mancabelli L et al. Decoding the genomic variability among members of the Bifidobacterium dentium species. Microorganisms 2020; 8:11 [View Article]
    [Google Scholar]
  48. Albert K, Rani A, Sela DA. Comparative pangenomics of the mammalian gut commensal Bifidobacterium longum. Microorganisms 2019; 8: [View Article] [PubMed]
    [Google Scholar]
  49. Freitas AC, Hill JE. Bifidobacteria isolated from vaginal and gut microbiomes are indistinguishable by comparative genomics. PLoS One 2018; 13:e0196290 [View Article] [PubMed]
    [Google Scholar]
  50. Duranti S, Milani C, Lugli GA, Mancabelli L, Turroni F et al. Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis. Sci Rep 2016; 6:23971 [View Article] [PubMed]
    [Google Scholar]
  51. Lugli GA, Milani C, Turroni F, Duranti S, Mancabelli L et al. Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genomics 2017; 18:568 [View Article]
    [Google Scholar]
  52. Bottacini F, O’Connell Motherway M, Kuczynski J, O’Connell KJ, Serafini F et al. Comparative genomics of the Bifidobacterium breve taxon. BMC Genomics 2014; 15:170 [View Article] [PubMed]
    [Google Scholar]
  53. Lugli GA, Milani C, Duranti S, Mancabelli L, Mangifesta M et al. Tracking the taxonomy of the genus Bifidobacterium based on a phylogenomic approach. Appl Environ Microbiol 2018; 84: [View Article]
    [Google Scholar]
  54. Tarracchini C, Lugli GA, Mancabelli L, Milani C, Turroni F et al. Assessing the genomic variability of Gardnerella vaginalis through comparative genomic analyses: Evolutionary and ecological implications. Appl Environ Microbiol 2020; 87: [View Article] [PubMed]
    [Google Scholar]
  55. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011; 469:543–547 [View Article] [PubMed]
    [Google Scholar]
  56. Prasanna PH, Bell A, Grandison AS, Charalampopoulos D. Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205. Carbohydr Polym 2012; 90:533–540 [View Article] [PubMed]
    [Google Scholar]
  57. Wei YX, Zhang ZY, Liu C, Zhu YZ, Zhu YQ et al. Complete genome sequence of Bifidobacterium longum JDM301. J Bacteriol 2010; 192:4076–4077 [View Article] [PubMed]
    [Google Scholar]
  58. Koskiniemi S, Sun S, Berg OG, Andersson DI. Selection-driven gene loss in bacteria. Plos Genet 2012; 8:e1002787 [View Article] [PubMed]
    [Google Scholar]
  59. Paul S, Sokurenko EV, Chattopadhyay S. Corrected genome annotations reveal gene loss and antibiotic resistance as drivers in the fitness evolution of Salmonella enterica serovar typhimurium. J Bacteriol 2016; 198:3152–3161 [View Article] [PubMed]
    [Google Scholar]
  60. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. The microbial pan-genome. Curr Opin Genet Dev 2005; 15:589–594 [View Article] [PubMed]
    [Google Scholar]
  61. Maglott DR, Katz KS, Sicotte H, Pruitt KD. NCBI’s LocusLink and RefSeq. Nucleic Acids Res 2000; 28:126–128 [View Article] [PubMed]
    [Google Scholar]
  62. Jones P, Binns D, Chang HY, Fraser M, Li W et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014; 30:1236–1240 [View Article] [PubMed]
    [Google Scholar]
  63. Sarrazin S, Joosten P, Van Gompel L, Luiken REC, Mevius DJ et al. Quantitative and qualitative analysis of antimicrobial usage patterns in 180 selected farrow-to-finish pig farms from nine European countries based on single batch and purchase data. J Antimicrob Chemother 2019; 74:807–816 [View Article] [PubMed]
    [Google Scholar]
  64. Burow E, Rostalski A, Harlizius J, Gangl A, Simoneit C et al. Antibiotic resistance in Escherichia coli from pigs from birth to slaughter and its association with antibiotic treatment. Prev Vet Med 2019; 165:52–62 [View Article] [PubMed]
    [Google Scholar]
  65. Moller PL, Jorgensen F, Hansen OC, Madsen SM, Stougaard P. Intra- and extracellular beta-galactosidases from Bifidobacterium bifidum and B. infantis: molecular cloning, heterologous expression, and comparative characterization. Appl Environ Microbiol 2001; 67:2276–2283
    [Google Scholar]
  66. Gueimonde M, Salminen S, Isolauri E. Presence of specific antibiotic (tet) resistance genes in infant faecal microbiota. FEMS Immunol Med Microbiol 2006; 48:21–25 [View Article] [PubMed]
    [Google Scholar]
  67. Roberts MC. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 2005; 245:195–203 [View Article] [PubMed]
    [Google Scholar]
  68. Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M et al. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 2019; 8: [View Article] [PubMed]
    [Google Scholar]
  69. Wiciński M, Sawicka E, Gębalski J, Kubiak K, Malinowski B. Human milk oligosaccharides: Health benefits, potential applications in infant formulas, and pharmacology. Nutrients 2020; 12: [View Article]
    [Google Scholar]
  70. Duar RM, Casaburi G, Mitchell RD, Scofield LNC, Ortega Ramirez CA et al. Comparative genome analysis of bifidobacterium longum Subsp. Infantis strains reveals variation in human milk oligosaccharide utilization genes among commercial probiotics. Nutrients 2020; 12:11
    [Google Scholar]
  71. Sela DA, Li Y, Lerno L, Wu S, Marcobal AM et al. An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J Biol Chem 2011; 286:11909–11918 [View Article] [PubMed]
    [Google Scholar]
  72. Intra J, Pavesi G, Horner DS. Phylogenetic analyses suggest multiple changes of substrate specificity within the glycosyl hydrolase 20 family. BMC Evol Biol 2008; 8:214 [View Article] [PubMed]
    [Google Scholar]
  73. Sakanaka M, Gotoh A, Yoshida K, Odamaki T, Koguchi H et al. Varied pathways of infant gut-associated bifidobacterium to assimilate human milk oligosaccharides: Prevalence of the gene set and its correlation with bifidobacteria-rich microbiota formation. Nutrients 2019; 12: [View Article] [PubMed]
    [Google Scholar]
  74. Duranti S, Turroni F, Lugli GA, Milani C, Viappiani A et al. Genomic characterization and transcriptional studies of the starch-utilizing strain Bifidobacterium adolescentis 22L. Appl Environ Microbiol 2014; 80:6080–6090 [View Article] [PubMed]
    [Google Scholar]
  75. Zabel BE, Gerdes S, Evans KC, Nedveck D, Singles SK et al. Strain-specific strategies of 2’-fucosyllactose, 3-fucosyllactose, and difucosyllactose assimilation by Bifidobacterium longum subsp. infantis Bi-26 and ATCC 15697. Sci Rep 2020; 10:15919 [View Article] [PubMed]
    [Google Scholar]
  76. Duranti S, Lugli GA, Mancabelli L, Armanini F, Turroni F et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome 2017; 5:66 [View Article]
    [Google Scholar]
  77. Garrido D, Ruiz-Moyano S, Lemay DG, Sela DA, German JB et al. Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria. Sci Rep 2015; 5:13517 [View Article] [PubMed]
    [Google Scholar]
  78. Garrido D, Ruiz-Moyano S, Kirmiz N, Davis JC, Totten SM et al. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Sci Rep 2016; 6:35045 [View Article] [PubMed]
    [Google Scholar]
  79. Kato K, Odamaki T, Mitsuyama E, Sugahara H, Xiao JZ et al. Age-related changes in the composition of gut bifidobacterium species. Curr Microbiol 2017; 74:987–995 [View Article] [PubMed]
    [Google Scholar]
  80. Sela DA, Mills DA. Nursing our microbiota: Molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol 2010; 18:298–307 [View Article] [PubMed]
    [Google Scholar]
  81. Kelly SM, Munoz-Munoz J, van Sinderen D. Plant glycan metabolism by bifidobacteria. Front Microbiol 2021; 12:609418 [View Article] [PubMed]
    [Google Scholar]
  82. Kujawska M, La Rosa SL, Roger LC, Pope PB, Hoyles L et al. Succession of bifidobacterium longum strains in response to a changing early life nutritional environment reveals dietary substrate adaptations. iScience 2020; 23:101368 [View Article] [PubMed]
    [Google Scholar]
  83. Garrido D, Barile D, Mills DA. A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv Nutr 2012; 3:415S–421S [View Article]
    [Google Scholar]
  84. Bolotin E, Hershberg R. Horizontally acquired genes are often shared between closely related bacterial species. Front Microbiol 2017; 8:1536 [View Article] [PubMed]
    [Google Scholar]
  85. Bonham KS, Wolfe BE, Dutton RJ. Extensive horizontal gene transfer in cheese-associated bacteria. elife 2017; 6: [View Article] [PubMed]
    [Google Scholar]
  86. Gyles C, Boerlin P. Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. Vet Pathol 2014; 51:328–340 [View Article] [PubMed]
    [Google Scholar]
  87. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000; 405:299–304 [View Article] [PubMed]
    [Google Scholar]
  88. Bottacini F, Motherway O, Casey M, McDonnell E, Mahony J B et al. Discovery of a conjugative megaplasmid in Bifidobacterium breve. Appl Environ Microbiol 2015; 81:166–176 [View Article]
    [Google Scholar]
  89. Ventura M, Turroni F, Foroni E, Duranti S, Giubellini V et al. Analyses of bifidobacterial prophage-like sequences. Antonie van Leeuwenhoek 2010; 98:39–50 [View Article] [PubMed]
    [Google Scholar]
  90. Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F et al. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol 2014; 80:6290–6302 [View Article] [PubMed]
    [Google Scholar]
  91. Mancabelli L, Milani C, Lugli GA, Turroni F, Cocconi D et al. Identification of universal gut microbial biomarkers of common human intestinal diseases by meta-analysis. FEMS Microbiol Ecol 2017; 93:12 [View Article]
    [Google Scholar]
  92. Woods LC, Gorrell RJ, Taylor F, Connallon T, Kwok T et al. Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation. Proc Natl Acad Sci U S A 2020; 117:26868–26875 [View Article] [PubMed]
    [Google Scholar]
  93. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 2005; 102:13950–13955 [View Article] [PubMed]
    [Google Scholar]
  94. Collins RE, Higgs PG. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol Biol Evol 2012; 29:3413–3425 [View Article] [PubMed]
    [Google Scholar]
  95. Wackett LP. Lactic acid bacteria: An annotated selection of World Wide Web sites relevant to the topics in microbial biotechnology. Microb Biotechnol 2016; 9:525–526 [View Article] [PubMed]
    [Google Scholar]
  96. McAuliffe O, Ross RP, Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 2001; 25:285–308 [View Article] [PubMed]
    [Google Scholar]
  97. Oliveira PH, Touchon M, Rocha EP. Regulation of genetic flux between bacteria by restriction-modification systems. Proc Natl Acad Sci U S A 2016; 113:5658–5663 [View Article] [PubMed]
    [Google Scholar]
  98. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315:1709–1712 [View Article] [PubMed]
    [Google Scholar]
  99. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 2011; 9:467–477 [View Article] [PubMed]
    [Google Scholar]
  100. Hidalgo-Cantabrana C, Crawley AB, Sanchez B, Barrangou R. Characterization and exploitation of CRISPR Loci in Bifidobacterium longum. Front Microbiol 2017; 8:1851 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000609
Loading
/content/journal/mgen/10.1099/mgen.0.000609
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error