Ongoing evolution of lymphogranuloma venereum: exploring the genomic diversity of circulating strains Open Access

Abstract

Lymphogranuloma venereum (LGV), the invasive infection of the sexually transmissible infection (STI) , is caused by strains from the LGV biovar, most commonly represented by -genotypes L2b and L2. We investigated the diversity in LGV samples across an international collection over seven years using typing and genome sequencing. LGV-positive samples (=321) from eight countries collected between 2011 and 2017 (Spain =97, Netherlands =67, Switzerland =64, Australia =53, Sweden =37, Hungary =31, Czechia =30, Slovenia =10) were genotyped for and variants. All were found to contain the 9 bp insertion in the gene, previously associated with -genotype L2b. However, analysis of the gene shows -genotype L2b (=83), -genotype L2 (=180) and several variants of these (=52; 12 variant types), as well as other/mixed -genotypes (=6). To elucidate the genomic diversity, whole genome sequencing (WGS) was performed from selected samples using SureSelect target enrichment, resulting in 42 genomes, covering a diversity of -genotypes and representing most of the countries sampled. A phylogeny of these data clearly shows that these -genotypes derive from an -genotype L2b ancestor, carrying up to eight SNPs per isolate. SNPs within are overrepresented among genomic changes in these samples, each of which results in an amino acid change in the variable domains of OmpA (major outer membrane protein, MOMP). A reversion to -genotype L2 with the L2b genomic backbone is commonly seen. The wide diversity of -genotypes found in these recent LGV samples indicates that this gene is under immunological selection. Our results suggest that the -genotype L2b genomic backbone is the dominant strain circulating and evolving particularly in men who have sex with men (MSM) populations.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000599
2021-06-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/6/mgen000599.html?itemId=/content/journal/mgen/10.1099/mgen.0.000599&mimeType=html&fmt=ahah

References

  1. Rowley J, Vander Hoorn S, Korenromp E, Low N, Unemo M. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ 2019; 97:548–562p [View Article]
    [Google Scholar]
  2. de Vries HJ, Zingoni A, Kreuter A, Moi H, White J. European Guideline on the Management of Lymphogranuloma Venereum: IUSTI; 2013
    [Google Scholar]
  3. Stoner BP, Cohen SE. Lymphogranuloma venereum 2015: clinical presentation, diagnosis, and treatment. Clin Infec Dis 2015; 61:S865–S873
    [Google Scholar]
  4. Rodriguez-Marañón MJ, Bush RM, Peterson EM, Schirmer T, de la Maza LM. Prediction of the membrane-spanning beta-strands of the major outer membrane protein of Chlamydia. Protein science: a publication of the Protein Society 2002; 11:1854–1861
    [Google Scholar]
  5. Sun G, Pal S, Sarcon AK, Kim S, Sugawara E. Structural and functional analyses of the major outer membrane protein of Chlamydia trachomatis. J Bacteriol 2007; 189:6222–6235 [View Article] [PubMed]
    [Google Scholar]
  6. Feher VA, Randall A, Baldi P, Bush RM, de la Maza LM. A 3-dimensional trimeric beta-barrel model for Chlamydia MOMP contains conserved and novel elements of Gram-negative bacterial porins. PLoS One 2013; 8:e68934 [View Article] [PubMed]
    [Google Scholar]
  7. Van de Laar M. The emergence of LGV in Western Europe: what do we know, what can we do?. Euro Surveill 2006; 11:1–2 [View Article] [PubMed]
    [Google Scholar]
  8. Spaargaren J, Fennema HSA, Morré SA, de Vries HJC, Coutinho RA. New lymphogranuloma venereum Chlamydia trachomatis variant, Amsterdam. Emerg Infect Dis 2005; 11:1090–1092 [View Article] [PubMed]
    [Google Scholar]
  9. Harris SR, Clarke IN, Seth-Smith HMB, Solomon AW, Cutcliffe L. Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nature Genetics 2012; 44:364–366 [View Article]
    [Google Scholar]
  10. Christerson L, de Vries HJ, de Barbeyrac B, Gaydos CA, Henrich B. Typing of lymphogranuloma venereum Chlamydia trachomatis strains. Emerg Infect Dis 2010; 16:1777–1779 [View Article] [PubMed]
    [Google Scholar]
  11. Thomson NR, Holden MTG, Carder C, Lennard N, Lockey SJ. Chlamydia trachomatis: Genome sequence analysis of lymphogranuloma venereum isolates. Genome Res 2008; 18:161–171 [View Article] [PubMed]
    [Google Scholar]
  12. Hadfield J, Harris S, Seth-Smith H, Parmar S, Andersson P. Comprehensive global genome dynamics of Chlamydia trachomatis show ancient diversification followed by contemporary mixing and recent lineage expansion. Gen Res 2017; 27:1220–1229 [View Article]
    [Google Scholar]
  13. Morré SA, Spaargaren J, Fennema JSA, de Vries HJC, Coutinho RA et al. Real-time polymerase chain reaction to diagnose lymphogranuloma Venereum. Emerg Infect Dis 2005; 11:1311–1312 [View Article] [PubMed]
    [Google Scholar]
  14. Chen CY, Chi KH, Alexander S, Ison CA, Ballard RC. A real-time quadriplex PCR assay for the diagnosis of rectal lymphogranuloma venereum and non-lymphogranuloma venereum Chlamydia trachomatis infections. Sex Transm Infect 2008; 84:273–276 [View Article] [PubMed]
    [Google Scholar]
  15. Quint KD, Bom RJ, Quint WG, Bruisten SM, van der Loeff MF. Anal infections with concomitant Chlamydia trachomatis genotypes among men who have sex with men in Amsterdam, the Netherlands. BMC Infect Dis 2011; 11:63 [View Article] [PubMed]
    [Google Scholar]
  16. Versteeg B, Bruisten SM, Pannekoek Y, Jolley KA, Maiden MCJ. Genomic analyses of the Chlamydia trachomatis core genome show an association between chromosomal genome, plasmid type and disease. BMC genomics 2018; 19:130 [View Article] [PubMed]
    [Google Scholar]
  17. de Vries HJC, de Barbeyrac B, de Vrieze NHN, Viset JD, White JA. 2019 European guideline on the management of lymphogranuloma venereum. J Eur Acad Dermatol Venereol 2019; 33:1821–1828 [View Article] [PubMed]
    [Google Scholar]
  18. Verweij SP, Catsburg A, Ouburg S, Lombardi A, Heijmans R. Lymphogranuloma venereum variant L2b-specific polymerase chain reaction: insertion used to close an epidemiological gap. Clin Microbiol Infect 2011; 17:1727–1730 [View Article] [PubMed]
    [Google Scholar]
  19. Touati A, Peuchant O, Henin N, Bebear C, de Barbeyrac B. The L2b real-time PCR targeting the pmpH gene of Chlamydia trachomatis used for the diagnosis of lymphogranuloma venereum is not specific to L2b strains. Clin Microbiol Infect 2016; 22:574
    [Google Scholar]
  20. Peuchant O, Touati A, Sperandio C, Hénin N, Laurier-Nadalié C et al. Changing pattern of Chlamydia trachomatis strains in lymphogranuloma Venereum outbreak, France, 2010-2015. Emerg Infect Dis 2016; 22:1945–1947 [View Article] [PubMed]
    [Google Scholar]
  21. Isaksson J, Carlsson O, Airell Å, Strömdahl S, Bratt G et al. Lymphogranuloma venereum rates increased and Chlamydia trachomatis genotypes changed among men who have sex with men in Sweden 2004-2016. J Med Microbiol 2017; 66:1684–1687 [View Article] [PubMed]
    [Google Scholar]
  22. Rodriguez-Dominguez M, Puerta T, Menendez B, Gonzalez-Alba JM, Rodriguez C. Clinical and epidemiological characterization of a lymphogranuloma venereum outbreak in Madrid, Spain: co-circulation of two variants. Clin Microbiol Infect 2014; 20:219–225 [View Article] [PubMed]
    [Google Scholar]
  23. Cole MJ, Field N, Pitt R, Amato-Gauci AJ, Begovac J. Substantial underdiagnosis of lymphogranuloma venereum in men who have sex with men in Europe: preliminary findings from a multicentre surveillance pilot. Sex Transm Infect 2019; 96:137–142 [View Article] [PubMed]
    [Google Scholar]
  24. Marangoni A, Foschi C, Tartari F, Gaspari V, MC R. Lymphogranuloma venereum genovariants in men having sex with men in Italy. Sex Transm Infect 2020
    [Google Scholar]
  25. Gomes JP, Nunes A, Florindo C, Ferreira MA, Santo I. Lymphogranuloma venereum in Portugal: unusual events and new variants during 2007. Sex Transm Dis 2009; 36:88–91 [View Article] [PubMed]
    [Google Scholar]
  26. Kendall BA, Tardif KD, Schlaberg R. Chlamydia trachomatis L serovars and dominance of novel L2b ompA variants, U.S.A. Sex Transm Infect 2014; 90:336 [View Article] [PubMed]
    [Google Scholar]
  27. Stary G, Meyer T, Bangert C, Kohrgruber N, Gmeinhart B. New Chlamydia trachomatis L2 strains identified in a recent outbreak of lymphogranuloma venereum in Vienna, Austria. Sex Transm Dis 2008; 35:377–382 [View Article] [PubMed]
    [Google Scholar]
  28. Somboonna N, Wan R, DM O, Pettengill MA, Joseph SJ. Hypervirulent Chlamydia trachomatis clinical strain is a recombinant between lymphogranuloma venereum (L(2)) and D lineages. Mol Biol Evol 2011; 2:e00045-00011
    [Google Scholar]
  29. Seth-Smith HM, Galan JC, Goldenberger D, Lewis DA, Peuchant O. Concern regarding the alleged spread of hypervirulent lymphogranuloma venereum Chlamydia trachomatis strain in Europe. Euro Surveill 2017; 22:15
    [Google Scholar]
  30. Borges V, Cordeiro D, Salas AI, Lodhia Z, Correia C. Chlamydia trachomatis: when the virulence-associated genome backbone imports a prevalence-associated major antigen signature. Microb Genom 2019; 5:11e000313 [View Article]
    [Google Scholar]
  31. Joseph SJ, Didelot X, Rothschild J, de Vries HJC, Morré SA et al. Population genomics of Chlamydia trachomatis: Insights on drift, selection, recombination, and population structure. Mol Biol Evol 2012; 29:3933–3946 [View Article] [PubMed]
    [Google Scholar]
  32. Rodríguez-Domínguez M, González-Alba JM, Puerta T, Martínez-García L, Menéndez B et al. Spread of a new Chlamydia trachomatis variant from men who have sex with men to the heterosexual population after replacement and recombination in OMPA and PMPH genes. Clin Microbiol Infect 2017; 23:761–766 [View Article] [PubMed]
    [Google Scholar]
  33. Lysén M, Osterlund A, Rubin CJ, Persson I, Persson I et al. Characterization of OMPA genotypes by sequence analysis of DNA from all detected cases of Chlamydia trachomatis infections during 1 year of contact tracing in a Swedish county. J Clin Microbiol 2004; 42:1641–1647 [View Article] [PubMed]
    [Google Scholar]
  34. Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ et al. A large genome center’s improvements to the Illumina sequencing system. Nat Methods 2008; 5:1005–1010 [View Article] [PubMed]
    [Google Scholar]
  35. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler Transform Bioinformatics (Oxford, England: 2009 pp 1754–1760
    [Google Scholar]
  36. Rutherford KM, Parkhill J, Crook J, Horsnell T, Rice P et al. Artemis: Sequence Visualization and Annotation Bioinformatics Oxford, England: 2000 pp 944–945
    [Google Scholar]
  37. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article] [PubMed]
    [Google Scholar]
  38. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  39. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article] [PubMed]
    [Google Scholar]
  40. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen. Virus Evolution 2016; 2: [View Article]
    [Google Scholar]
  41. Didelot X, Croucher NJ, Bentley SD, Harris SR, Wilson DJ. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res 2018; 46:e134 [View Article] [PubMed]
    [Google Scholar]
  42. RStudio Team Rstudio: Integrated development for R version 1.2.5033; 2021 http://www.rstudio.com
  43. R Core Team R: A language and environment for statistical computing version 3.6.2; 2021 https://www.r-project.org
  44. Didelot X, Siveroni I, Volz EM. Additive uncorrelated relaxed clock models for the dating of genomic epidemiology phylogenies. Mol Biol Evol 2020
    [Google Scholar]
  45. Borges V, Gomes JP. Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation. Infect Genet Evol 2015; 32:74–88 [View Article]
    [Google Scholar]
  46. Klint M, Fuxelius HH, Goldkuhl RR, Skarin H, Rutemark C et al. High-resolution genotyping of Chlamydia trachomatis strains by multilocus sequence analysis. J Clin Microbiol 2007; 45:1410–1414 [View Article] [PubMed]
    [Google Scholar]
  47. Herrmann B, Isaksson J, Ryberg M, Tångrot J, Saleh I et al. Global multilocus sequence type analysis of Chlamydia trachomatis strains from 16 Countries. J Clin Microbiol 2015; 53:2172–2179 [View Article] [PubMed]
    [Google Scholar]
  48. Pannekoek Y, Morelli G, Kusecek B, Morré SA, Ossewaarde JM et al. Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis. BMC Microbiol 2008; 8:42 [View Article] [PubMed]
    [Google Scholar]
  49. Dean D, Bruno WJ, Wan R, Gomes JP, Devignot S et al. Predicting phenotype and emerging strains among Chlamydia trachomatis infections. Emerg Infect Dis 2009; 15:1385–1394 [View Article] [PubMed]
    [Google Scholar]
  50. Nunes A, Nogueira PJ, Borrego MJ, Gomes JP. Adaptive evolution of the Chlamydia trachomatis dominant antigen reveals distinct evolutionary scenarios for B- and T-cell epitopes: worldwide survey. PLoS One 2010; 5:10
    [Google Scholar]
  51. Zhong G, RC B. Antigenic determinants of the chlamydial major outer membrane protein resolved at a single amino acid level. Infect Immun 1991; 59:1141–1147 [View Article]
    [Google Scholar]
  52. Hayes LJ, Pickett MA, Conlan JW, Ferris S, Everson JS et al. The major outer-membrane proteins of Chlamydia trachomatis serovars A and B: intra-serovar amino acid changes do not alter specificities of serovar- and C subspecies-reactive antibody-binding domains. J Gen Microbiol 1990; 136:1559–1566 [View Article] [PubMed]
    [Google Scholar]
  53. Joseph SJ, Didelot X, Gandhi K, Dean D, Read TD. Interplay of recombination and selection in the genomes of Chlamydia trachomatis. Biol Direct 2011; 6:28 [View Article] [PubMed]
    [Google Scholar]
  54. Brunelle BW, Sensabaugh GF. Nucleotide and phylogenetic analyses of the Chlamydia trachomatis ompA gene indicates it is a hotspot for mutation. BMC Res Notes 2012; 5:53 [View Article] [PubMed]
    [Google Scholar]
  55. Murray GGR, Wang F, Harrison EM, Paterson GK, Mather AE et al. The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol Evol 2016; 7:80–89 [View Article] [PubMed]
    [Google Scholar]
  56. Le Negrate G, Krieg A, Faustin B, Loeffler M, Godzik A. ChlaDub1 of Chlamydia trachomatis suppresses NF-kappaB activation and inhibits IkappaBalpha ubiquitination and degradation. Cell Microbiol 2008; 10:1879–1892 [View Article] [PubMed]
    [Google Scholar]
  57. Gomes JP, Nunes A, Bruno WJ, Borrego MJ, Florindo C et al. Polymorphisms in the nine polymorphic membrane proteins of Chlamydia trachomatis across all serovars: Evidence for serovar da recombination and correlation with tissue tropism. J Bacteriol 2006; 188:275–286 [View Article] [PubMed]
    [Google Scholar]
  58. Tsai PY, Hsu MC, Huang CT, SY L. Human antibody and antigen response to IncA antibody of Chlamydia trachomatis. Int J Immunopathol Pharmacol 2007; 20:156–161
    [Google Scholar]
  59. van Aar F, Kroone MM, de Vries HJ, Gotz HM, van Benthem BH. Increasing trends of lymphogranuloma venereum among HIV-negative and asymptomatic men who have sex with men, the Netherlands, 2011 to 2017. Euro Surveill 2020; 25: [View Article] [PubMed]
    [Google Scholar]
  60. Harris SR, Clarke IN, Seth-Smith HMB, Solomon AW, Cutcliffe LT et al. Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat Genet 2012; 44:413–419S411 [View Article] [PubMed]
    [Google Scholar]
  61. Matičič M, Klavs I, Videčnik Zorman J, Vidmar Vovko D, Kogoj R et al. Confirmed inguinal lymphogranuloma venereum genovar L2c in a man who had sex with men, Slovenia, 2015. Euro Surveill 2016; 21:2–5 [View Article] [PubMed]
    [Google Scholar]
  62. Petrovay F, Balla E, Erdosi T. Emergence of the lymphogranuloma venereum L2c genovariant, Hungary, 2012 to 2016. Euro Surveill 2017; 22: [View Article] [PubMed]
    [Google Scholar]
  63. Bom RJM, Christerson L, Schim van der Loeff MF, Coutinho RA, Herrmann B et al. Evaluation of high-resolution typing methods for Chlamydia trachomatis in samples from heterosexual couples. J Clin Microbiol 2011; 49:2844–2853 [View Article] [PubMed]
    [Google Scholar]
  64. Herrmann B, Törner A, Low N, Klint M, Nilsson A et al. Emergence and spread of Chlamydia trachomatis variant, Sweden. Emerg Infect Dis 2008; 14:1462–1465 [View Article]
    [Google Scholar]
  65. Ripa T, Nilsson P. A variant of Chlamydia trachomatis with deletion in cryptic plasmid: implications for use of PCR diagnostic tests. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 2006; 11:E061109
    [Google Scholar]
  66. Ripa T, Nilsson PA. A Chlamydia trachomatis strain with a 377-bp deletion in the cryptic plasmid causing false-negative nucleic acid amplification tests. Sex Transm Dis 2007; 34:255–256 [View Article] [PubMed]
    [Google Scholar]
  67. Seth-Smith HMB, Harris SR, Persson K, Marsh P, Barron A et al. Co-evolution of genomes and plasmids within Chlamydia trachomatis and the emergence in Sweden of a new variant strain. BMC genomics 2009; 10:239 [View Article] [PubMed]
    [Google Scholar]
  68. Rantakokko-Jalava K, Hokynar K, Hieta N, Keskitalo A, Jokela P et al. Chlamydia trachomatis samples testing falsely negative in the aptima Combo 2 test in Finland, 2019. Euro Surveillance: Bulletin Europeen sur les maladies Transmissibles = European Communicable Disease Bulletin 2019; 24:1900298
    [Google Scholar]
  69. Unemo M, Getman D, Hadad R, Cole M, Thomson N et al. Letter to the editor: Chlamydia trachomatis samples testing falsely negative in the aptima combo 2 test in Finland, 2019. Euro Surveillance: Bulletin Europeen sur les maladies Transmissibles = European Communicable Disease Bulletin 2019; 24:1900354
    [Google Scholar]
  70. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM et al. Phandango: An interactive viewer for bacterial population genomics. Bioinformatics 2017
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000599
Loading
/content/journal/mgen/10.1099/mgen.0.000599
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited Most Cited RSS feed