1887

Abstract

constitute one of the phylogenomic subgroups within the species complex and include both plant growth-promoting rhizobacteria (PGPR) and plant pathogenic bacteria. Previous studies suggest that the species diversity of this group remains largely unexplored together with frequent misclassification of strains. Using more than 1800 sequenced genomes we identified 121 genomes belonging to the subgroup. Intergenomic distances obtained using the genome-to-genome blast distance (GBDP) algorithm and the determination of digital DNA–DNA hybridization values were further used for phylogenomic and clustering analyses, which revealed 29 putative species clusters, of which only five correspond to currently named species within the subgroup. Comparative and functional genome-scale analyses also support the species status of these clusters. The search for PGPR and plant pathogenic determinants showed that approximately half of the genomes analysed could have a pathogenic behaviour based on the presence of a pathogenicity genetic island, while all analysed genomes possess PGPR traits. Finally, this information together with the characterization of phenotypic traits, allows the reclassification proposal of F113 as sp. nov., nom rev., type strain F113 (=DSM 112162=CECT 30235), which is substantiated by genomic, functional genomics and phenotypic differences with their closest type strains.

Funding
This study was supported by the:
  • Ministerio de Ciencia, Innovación y Universidades (Award RTI2018-093991-B-I00)
    • Principle Award Recipient: RafaelRivilla
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000593
2021-06-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/6/mgen000593.html?itemId=/content/journal/mgen/10.1099/mgen.0.000593&mimeType=html&fmt=ahah

References

  1. Lessie T, Phibbs Jr P. Alternative pathways of carbohydrate utilization in Pseudomonads. Annu Rev Microbiol 1984; 38:359–388 [View Article]
    [Google Scholar]
  2. Lopes LD, Davis EW 2nd, Pereira E Silva M de C, Weisberg AJ, Bresciani L et al. Tropical soils are a reservoir for fluorescent Pseudomonas spp. Biodiversity. Environ Microbiol 2018; 20:62–74 [View Article] [PubMed]
    [Google Scholar]
  3. Reddy GS, Matsumoto GI, Schumann P, Stackebrandt E, Shivaji S. Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol 2004; 54:713–719 [View Article] [PubMed]
    [Google Scholar]
  4. Janek T, Łukaszewicz M, Rezanka T, Krasowska A. Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour Technol 2010; 101:6118–6123 [View Article] [PubMed]
    [Google Scholar]
  5. Campos VL, Valenzuela C, Yarza P, Kämpfer P, Vidal R. Pseudomonas arsenicoxydans sp nov., an arsenite-oxidizing strain isolated from the Atacama desert. Syst Appl Microbiol 2010; 33:193–197 [View Article] [PubMed]
    [Google Scholar]
  6. Kristoffersen V, Rämä T, Isaksson J, Andersen JH, Gerwick WH. Characterization of rhamnolipids produced by an arctic marine bacterium from the Pseudomonas fluorescence group. Mar Drugs 2018; 16:163 [View Article]
    [Google Scholar]
  7. Butaitė E, Baumgartner M, Wyder S, Kümmerli R. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat Commun 2017; 8:1–12 [View Article]
    [Google Scholar]
  8. Cho JC, Tiedje JM. Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 2000; 66:5448–5456 [View Article] [PubMed]
    [Google Scholar]
  9. Cornforth DM, Dees JL, Ibberson CB, Huse HK, Mathiesen IH. Pseudomonas aeruginosa transcriptome during human infection. Proceedings of the National Academy of Sciences 2018; 115:E5125–E5134 [View Article]
    [Google Scholar]
  10. Hoshino T, Ishizaki K, Sakamoto T, Kumeta H, Yumoto I. Isolation of a Pseudomonas species from fish intestine that produces a protease active at low temperature. Lett Appl Microbiol 1997; 25:70–72 [View Article] [PubMed]
    [Google Scholar]
  11. Vela AI, Gutiérrez MC, Falsen E, Rollan E, Simarro I. Pseudomonas simiae sp. nov., isolated from clinical specimens from monkeys (Callithrix geoffroyi. Int J Syst Evol Microbiol 2006; 56:2671–2676 [View Article] [PubMed]
    [Google Scholar]
  12. Brown SD, Utturkar SM, Klingeman DM, Johnson CM, Martin SL. Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides. Am Soc Microbiol 2012
    [Google Scholar]
  13. Xin XF, Kvitko B, SY H. Pseudomonas syringae: what it takes to be a pathogen. Nat Rev Microbiol 2018; 16:316
    [Google Scholar]
  14. Trantas EA, Licciardello G, Almeida NF, Witek K, Strano CP. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Front Microbiol 2015; 6:811 [View Article] [PubMed]
    [Google Scholar]
  15. Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R et al. Genomic and genetic diversity within the Pseudomonas fluorescens complex. PloS one 2016; 11:e0153733 [View Article] [PubMed]
    [Google Scholar]
  16. David BV, Chandrasehar G, Selvam PN. Pseudomonas fluorescens: a plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops. Crop improvement through microbial biotechnology Elsevier; 2018 pp 221–243
    [Google Scholar]
  17. Yang M, Mavrodi DV, Thomashow LS, Weller DM. Differential response of wheat cultivars to Pseudomonas brassicacearum and take-all decline soil. Phytopathology 2018; 108:1363–1372 [View Article] [PubMed]
    [Google Scholar]
  18. Chen Y, Shen X, Peng H, Hu H, Wang W. Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Genom Data 2015; 4:33–42 [View Article] [PubMed]
    [Google Scholar]
  19. Andreolli M, Zapparoli G, Angelini E, Lucchetta G, Lampis S. Pseudomonas protegens MP12: A plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens. Microbiol Res 2019; 219:123–131 [View Article] [PubMed]
    [Google Scholar]
  20. Mulet M, Lalucat J, García‐Valdés E. DNA sequence‐based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530
    [Google Scholar]
  21. Marcelletti S, Scortichini M. Definition of plant-pathogenic Pseudomonas genomospecies of the Pseudomonas syringae complex through multiple comparative approaches. Phytopathology 2014; 104:1274–1282 [View Article] [PubMed]
    [Google Scholar]
  22. Peña A, Busquets A, Gomila M, Mulet M, Gomila RM. High quality draft genome sequences of Pseudomonas fulva DSM 17717T, Pseudomonas parafulva DSM 17004T and Pseudomonas cremoricolorata DSM 17059T type strains. Stand Genomic Sci 2016; 11:55 [View Article] [PubMed]
    [Google Scholar]
  23. Lalucat J, Mulet M, Gomila M, García-Valdés E. Genomics in bacterial taxonomy: impact on the genus Pseudomonas. Genes (Basel) 2020; 11:139 [View Article]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences 2009; 106:19126–19131
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  26. Garrido-Sanz D, Arrebola E, Martinez-Granero F, Garcia-Mendez S, Muriel C. Classification of isolates from the Pseudomonas fluorescens complex into phylogenomic groups based in group-specific markers. Front Microbiol 2017; 8:413 [View Article] [PubMed]
    [Google Scholar]
  27. Gislason AS, de Kievit TR. Friend or foe? Exploring the fine line between Pseudomonas brassicacearum and phytopathogens. J Med Microbiol 2020; 69:347–360 [View Article] [PubMed]
    [Google Scholar]
  28. Nelkner J, Torres Tejerizo G, Hassa J, Lin TW, Witte J. Genetic potential of the biocontrol agent Pseudomonas brassicacearum (formerly P. trivialis) 3Re2-7 unraveled by genome sequencing and mining, comparative genomics and transcriptomics. Genes (Basel) 2019; 10:601
    [Google Scholar]
  29. Bangera MG, Thomashow LS. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2, 4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol 1999; 181:3155–3163 [View Article] [PubMed]
    [Google Scholar]
  30. Weller DM, Mavrodi DV, van Pelt JA, Pieterse CM, van Loon LC. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 2012; 102:403–412 [View Article] [PubMed]
    [Google Scholar]
  31. Brazelton JN, Pfeufer EE, Sweat TA, Gardener BBM, Coenen C. 2, 4-Diacetylphloroglucinol alters plant root development. Mol Plant Microbe Interact 2008; 21:1349–1358 [View Article] [PubMed]
    [Google Scholar]
  32. Vacheron J, Combes-Meynet E, Walker V, Gouesnard B, Muller D. Expression on roots and contribution to maize phytostimulation of 1-aminocyclopropane-1-decarboxylate deaminase gene acdS in Pseudomonas fluorescens F113. Plant and Soil 2016; 407:187–202 [View Article]
    [Google Scholar]
  33. Saravanakumar D, Samiyappan R. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 2007; 102:1283–1292 [View Article] [PubMed]
    [Google Scholar]
  34. Sapre S, Gontia-Mishra I, Tiwari S. ACC Deaminase-producing Bacteria: a Key Player in Alleviating Abiotic Stresses in Plants. Plant Growth Promoting Rhizobacteria for Agricultural Sustainability Springer; 2019 pp 267–291
    [Google Scholar]
  35. Scarlett CM, Fletcher J, Roberts P, Lelliott R. Tomato pith necrosis caused by Pseudomonas corrugata n. sp. Ann Appl Biol 1978; 88:105–114 [View Article]
    [Google Scholar]
  36. Catara V, Sutra L, Morineau A, Achouak W, Christen R. Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp. nov. Int J Syst Evol Microbiol 2002; 52:1749–1758 [View Article] [PubMed]
    [Google Scholar]
  37. Melnyk RA, Hossain SS, Haney CH. Convergent gain and loss of genomic islands drive lifestyle changes in plant-associated Pseudomonas. ISME J 2019; 13:1575–1588 [View Article] [PubMed]
    [Google Scholar]
  38. Licciardello G, Bertani I, Steindler L, Bella P, Venturi V. Pseudomonas corrugata contains a conserved N-acyl homoserine lactone quorum sensing system; its role in tomato pathogenicity and tobacco hypersensitivity response. FEMS Microbiol Ecol 2007; 61:222–234 [View Article] [PubMed]
    [Google Scholar]
  39. Catara V. Pseudomonas corrugata: plant pathogen and/or biological resource?. Mol Plant Pathol 2007; 8:233–244 [View Article] [PubMed]
    [Google Scholar]
  40. Almario J, Bruto M, Vacheron J, Prigent-Combaret C, Moënne-Loccoz Y. Distribution of 2, 4-diacetylphloroglucinol biosynthetic genes among the Pseudomonas spp. reveals unexpected polyphyletism. Front Microbiol 2017; 8:1218 [View Article] [PubMed]
    [Google Scholar]
  41. Vesga P, Flury P, Vacheron J, Keel C, Croll D. Transcriptome plasticity underlying plant root colonization and insect invasion by pseudomonas protegens. The ISME Journal 2020; 2020:1–17
    [Google Scholar]
  42. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  43. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  44. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  45. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  46. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:1–10
    [Google Scholar]
  47. Göker M, García-Blázquez G, Voglmayr H, Tellería MT, Martín MP. Molecular taxonomy of phytopathogenic fungi: A case study in Peronospora. PloS one 2009; 4:e6319 [View Article] [PubMed]
    [Google Scholar]
  48. Garrido-Sanz D, Redondo-Nieto M, Martín M, Rivilla R. Comparative genomics of the Rhodococcus genus shows wide distribution of biodegradation traits. Microorganisms 2020; 8: [View Article]
    [Google Scholar]
  49. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:1–14
    [Google Scholar]
  50. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article] [PubMed]
    [Google Scholar]
  51. Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 2002; 30:1575–1584 [View Article] [PubMed]
    [Google Scholar]
  52. Wickham H. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics; 2011; 3180–185
  53. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K. Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539 [View Article] [PubMed]
    [Google Scholar]
  54. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article] [PubMed]
    [Google Scholar]
  55. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article] [PubMed]
    [Google Scholar]
  56. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article] [PubMed]
    [Google Scholar]
  57. SQ L, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008; 25:1307–1320
    [Google Scholar]
  58. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 2008; 57:758–771 [View Article] [PubMed]
    [Google Scholar]
  59. Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010; 17:337–354 [View Article] [PubMed]
    [Google Scholar]
  60. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article] [PubMed]
    [Google Scholar]
  61. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. Eggnog 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article]
    [Google Scholar]
  62. Tenenbaum D. KEGGREST: Client-side REST access to KEGG. R package version 1.24. 0. 2019; 2019
  63. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017; 33:2938–2940 [View Article] [PubMed]
    [Google Scholar]
  64. Goodpaster AM, Kennedy MA. Quantification and statistical significance analysis of group separation in NMR-based metabonomics studies. Chemometr Intell Lab Syst 2011; 109:162–170 [View Article] [PubMed]
    [Google Scholar]
  65. Mahalanobis PC. On the Generalized Distance in Statistics Calcutta: National Institute of Science of India; 1936
    [Google Scholar]
  66. Achouak W, Sutra L, Heulin T, Meyer JM, Fromin N et al. Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. Int J Syst Evol Microbiol 2000; 50 Pt 1:9–18 [View Article]
    [Google Scholar]
  67. Sikorski J, Stackebrandt E, Wackernagel W. Pseudomonas kilonensis sp. nov., a bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 2001; 51:1549–1555 [View Article] [PubMed]
    [Google Scholar]
  68. Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F. Isolation of 2, 4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 1992; 58:353–358 [View Article] [PubMed]
    [Google Scholar]
  69. Redondo-Nieto M, Barret M, Morrisey JP, Germaine K, Martínez-Granero F. Genome sequence of the biocontrol strain Pseudomonas fluorescens f113. Am Soc Microbiol 2012
    [Google Scholar]
  70. Brazil G, Kenefick L, Callanan M, Haro A, Lorenzo D. Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 1995; 61:1946–1952 [View Article]
    [Google Scholar]
  71. Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci 2003; 14:927–930 [View Article]
    [Google Scholar]
  72. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015; 6:214 [View Article] [PubMed]
    [Google Scholar]
  73. Lapage S, Sneath P, Lessel E, Skerman V, Seeliger H. International Code of Nomenclature of Bacteria: Bacteriological code, 1990 revision ASM Press; 1992
    [Google Scholar]
  74. Kyrpides NC, Hugenholtz P, Eisen JA, Woyke T, Göker M et al. Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS Biol 2014; 12:e1001920 [View Article] [PubMed]
    [Google Scholar]
  75. Ueda A, Saneoka H. Characterization of the ability to form biofilms by plant-associated Pseudomonas species. Curr Microbiol 2015; 70:506–513 [View Article] [PubMed]
    [Google Scholar]
  76. Blanco-Romero E, Garrido-Sanz D, Rivilla R, Redondo-Nieto M, Martín M. In silico characterization and phylogenetic distribution of extracellular matrix components in the model rhizobacteria Pseudomonas fluorescens F113 and other Pseudomonads. Microorganisms 2020; 8:1740 [View Article]
    [Google Scholar]
  77. Green ER, Mecsas J. Bacterial secretion systems: An overview. Virulence Mechanisms of Bacterial Pathogens 2016; 2016:213–239
    [Google Scholar]
  78. Almario J, Gobbin D, Défago G, Moënne-Loccoz Y, Rezzonico F. Prevalence of type III secretion system in effective biocontrol pseudomonads. Res Microbiol 2014; 165:300–304 [View Article] [PubMed]
    [Google Scholar]
  79. Bernal P, Llamas MA, Filloux A. Type VI secretion systems in plant‐associated bacteria. Environ Microbiol 2018; 20:1–15 [View Article] [PubMed]
    [Google Scholar]
  80. Redondo-Nieto M, Barret M, Morrissey J, Germaine K, Martínez-Granero F. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC genomics 2013; 14:1–17 [View Article]
    [Google Scholar]
  81. Barahona E, Navazo A, Garrido-Sanz D, Muriel C, Martínez-Granero F. Pseudomonas fluorescens F113 can produce a second flagellar apparatus, which is important for plant root colonization. Front Microbiol 2016; 7:1471 [View Article] [PubMed]
    [Google Scholar]
  82. Scher FM, Baker R. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 1982; 72:1567
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000593
Loading
/content/journal/mgen/10.1099/mgen.0.000593
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error