1887

Abstract

As part of the ongoing studies with clinically relevant spp., we characterized the genomes of three clinical GES-5-positive ST138 strains originally identified as gene, average nucleotide identity and phylogenetic analyses showed the strains to be . Affiliation of the strains to ST138 led us to demonstrate that the current multi-locus sequence typing scheme for can be used to distinguish members of this genetically diverse complex of bacteria. The strains encoded the kleboxymycin biosynthetic gene cluster (BGC), previously only found in strains and one strain of . The finding of this BGC, associated with antibiotic-associated haemorrhagic colitis, in led us to carry out a wide-ranging study to determine the prevalence of this BGC in spp. Of 7170 publicly available genome sequences screened, 88 encoded the kleboxymycin BGC. All BGC-positive strains belonged to the complex, with strains of four (, , , ) of the six species of complex found to encode the complete BGC. In addition to being found in strains isolated from preterm infants, the BGC was found in and metagenome-assembled genomes recovered from neonates. Detection of the kleboxymycin BGC across the complex may be of clinical relevance and this cluster should be included in databases characterizing virulence factors, in addition to those characterizing BGCs.

Funding
This study was supported by the:
  • Imperial Health Charity
    • Principle Award Recipient: PreethaShibu
  • Nottingham Trent University
    • Principle Award Recipient: LesleyHoyles
  • Biotechnology and Biological Sciences Research Council (Award BB/J004529/1)
    • Principle Award Recipient: LindsayJ Hall
  • Wellcome Trust (Award 100/974/C/13/Z)
    • Principle Award Recipient: LindsayJ Hall
  • Medical Research Council (Award MR/L01632X/1)
    • Principle Award Recipient: NotApplicable
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000592
2021-06-18
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/6/mgen000592.html?itemId=/content/journal/mgen/10.1099/mgen.0.000592&mimeType=html&fmt=ahah

References

  1. Merla C, Rodrigues C, Passet V, Corbella M, Thorpe HA et al. Description of Klebsiella spallanzanii sp. nov. and of Klebsiella pasteurii sp. nov. Front Microbiol 2019; 10:2360 [View Article]
    [Google Scholar]
  2. Passet V, Brisse S. Description of Klebsiella grimontii sp. nov. Int J Syst Evol Microbiol 2018; 68:377–381 [View Article] [PubMed]
    [Google Scholar]
  3. Chen Y, Brook TC, Soe CZ, O’Neill I, Alcon-Giner C et al. Preterm infants harbour diverse Klebsiella populations, including atypical species that encode and produce an array of antimicrobial resistance- and virulence-associated factors. Microb Genom 2020761924
    [Google Scholar]
  4. Zheng B, Xu H, Yu X, Lv T, Jiang X et al. Identification and genomic characterization of a KPC-2-, NDM-1- and NDM-5-producing Klebsiella michiganensis isolate. J Antimicrob Chemother 2018; 73:536–538 [View Article] [PubMed]
    [Google Scholar]
  5. Pedersen T, Sekyere JO, Govinden U, Moodley K, Sivertsen A et al. Spread of plasmid-encoded NDM-1 and GES-5 carbapenemases among extensively drug-resistant and pandrug-resistant clinical Enterobacteriaceae in Durban, South Africa. Antimicrob Agents Chemother 2018; 62: [View Article]
    [Google Scholar]
  6. Seiffert SN, Wüthrich D, Gerth Y, Egli A, Kohler P et al. First clinical case of kpc-3-producing Klebsiella michiganensis in Europe. New Microbes New Infect 2019; 29:100516 [View Article] [PubMed]
    [Google Scholar]
  7. Moradigaravand D, Martin V, Peacock SJ, Parkhill J. Population structure of multidrug-resistant Klebsiella oxytoca within hospitals across the United Kingdom and Ireland identifies sharing of virulence and resistance genes with K. pneumoniae. Genome Biol Evol 2017; 9:574–584 [View Article] [PubMed]
    [Google Scholar]
  8. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  9. Eades C, Davies F, Donaldson H, Hopkins K, Hill R et al. GES-5 carpabapenemase-producing Klebsiella oxytoca causing clinical infection in a UK haematopoetic stem cell transplantation unit. 26th European Congress of Clinical Microbiology and Infectious Diseases Amsterdam, The Netherlands: 2016
    [Google Scholar]
  10. Ellington MJ, Davies F, Jauneikaite E, Hopkins KL, Turton JF et al. A multi-species cluster of GES-5 carbapenemase producing Enterobacterales linked by a geographically disseminated plasmid. Clin Infect Dis Off Publ Infect Dis Soc Am 2019
    [Google Scholar]
  11. Tse H, Gu Q, Sze K-. H, Chu IK, RY-T K et al. A tricyclic pyrrolobenzodiazepine produced by Klebsiella oxytoca is associated with cytotoxicity in antibiotic-associated hemorrhagic colitis. J Biol Chem 2017; 292:19503–19520
    [Google Scholar]
  12. Schneditz G, Rentner J, Roier S, Pletz J, Herzog KAT et al. Enterotoxicity of a nonribosomal peptide causes antibiotic-associated colitis. Proc Natl Acad Sci U S A 2014; 111:13181–13186 [View Article] [PubMed]
    [Google Scholar]
  13. Dornisch E, Pletz J, Glabonjat RA, Martin F, Lembacher-Fadum C et al. Biosynthesis of the Enterotoxic pyrrolobenzodiazepine natural product tilivalline. Angew Chem Int Ed Engl 2017; 56:14753–14757 [View Article] [PubMed]
    [Google Scholar]
  14. Unterhauser K, Pöltl L, Schneditz G, Kienesberger S, Glabonjat RA et al. Klebsiella oxytoca enterotoxins tilimycin and tilivalline have distinct host DNA-damaging and microtubule-stabilizing activities. Proc Natl Acad Sci U S A 2019; 116:3774–3783 [View Article] [PubMed]
    [Google Scholar]
  15. Högenauer C, Langner C, Beubler E, Lippe IT, Schicho R et al. Klebsiella oxytoca as a causative organism of antibiotic-associated hemorrhagic colitis. N Engl J Med 2006; 355:2418–2426 [View Article] [PubMed]
    [Google Scholar]
  16. Beaugerie L, Metz M, Barbut F, Bellaiche G, Bouhnik Y et al. Klebsiella oxytoca as an agent of antibiotic-associated hemorrhagic colitis. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc 2003; 1:370–376
    [Google Scholar]
  17. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinforma Oxf Engl 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  18. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90k prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/map format and SAMtools. Bioinforma Oxf Engl 2009; 25:2078–2079
    [Google Scholar]
  20. Hubbard ATM, Newire E, Botelho J, Reiné J, Wright E et al. Isolation of an antimicrobial-resistant, biofilm-forming, Klebsiella grimontii isolate from a reusable water bottle. MicrobiologyOpen 2020; 9:1128–1134 [View Article] [PubMed]
    [Google Scholar]
  21. Schliep KP. phangorn: phylogenetic analysis in R. Bioinforma Oxf Engl 2011; 27:592–593 [View Article]
    [Google Scholar]
  22. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–9 [View Article] [PubMed]
    [Google Scholar]
  23. Rodrigues C, Passet V, Rakotondrasoa A, Diallo TA, Criscuolo A et al. Description of Klebsiella africanensis sp. nov., Klebsiella variicola subsp. tropicalensis subsp. nov. and Klebsiella variicola subsp. variicola subsp. nov. Res Microbiol 2019; 170:165–170 [View Article] [PubMed]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  25. Zuo B, Liu Z-H, Wang H-P, Yang Y-M, Chen J-L et al. [Genotype of TEM- and SHV-type beta-lactamase producing Klebsiella pneumoniae in Guangzhou area]. Zhonghua Yi Xue Za Zhi 2006; 86:2928–2932
    [Google Scholar]
  26. Liao T-L, Lin A-C, Chen E, Huang T-W, Liu Y-M et al. Complete genome sequence of Klebsiella oxytoca E718, a New Delhi metallo-β-lactamase-1-producing nosocomial strain. J Bacteriol 2012; 194:5454 [View Article] [PubMed]
    [Google Scholar]
  27. Herzog KAT, Schneditz G, Leitner E, Feierl G, Hoffmann KM et al. Genotypes of Klebsiella oxytoca isolates from patients with nosocomial pneumonia are distinct from those of isolates from patients with antibiotic-associated hemorrhagic colitis. J Clin Microbiol 2014; 52:1607–1616 [View Article] [PubMed]
    [Google Scholar]
  28. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiol Read Engl 2012; 158:1005–1015 [View Article]
    [Google Scholar]
  29. Higaki M, Chida T, Takano H, Nakaya R. Cytotoxic component(s) of Klebsiella oxytoca on HEp-2 cells. Microbiol Immunol 1990; 34:147–151 [View Article] [PubMed]
    [Google Scholar]
  30. Youn Y, Lee SW, Cho H-H, Park S, Chung H-S et al. Antibiotics-associated hemorrhagic colitis caused by Klebsiella oxytoca: two case reports. Pediatr Gastroenterol Hepatol Nutr 2018; 21:141–146 [View Article] [PubMed]
    [Google Scholar]
  31. Paveglio S, Ledala N, Rezaul K, Lin Q, Zhou Y et al. Cytotoxin-producing Klebsiella oxytoca in the preterm gut and its association with necrotizing enterocolitis. Emerg Microbes Infect 2020; 9:1321–1329 [View Article] [PubMed]
    [Google Scholar]
  32. Joainig MM, Gorkiewicz G, Leitner E, Weberhofer P, Zollner-Schwetz I et al. Cytotoxic effects of Klebsiella oxytoca strains isolated from patients with antibiotic-associated hemorrhagic colitis or other diseases caused by infections and from healthy subjects. J Clin Microbiol 2010; 48:817–824 [View Article] [PubMed]
    [Google Scholar]
  33. Connor TR, Loman NJ, Thompson S, Smith A, Southgate J et al. CLIMB (the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community. Microb Genomics 2016; 2:e000086 [View Article]
    [Google Scholar]
  34. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4:2304 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000592
Loading
/content/journal/mgen/10.1099/mgen.0.000592
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error