1887

Abstract

Although the beneficial effects of probiotics are likely to be associated with their ability to colonize the gut, little is known about the characteristics of good colonizers. In a systematic analysis of the comparative genomics, we tried to elucidate the genomic contents that account for the distinct host adaptability patterns of and species. The species, with species-level phylogenetic structures affected by recombination among strains, broad mucin-foraging activity, and dietary-fibre-degrading ability, represented niche conservatism and tended to be host-adapted. The species stretched across three lifestyles, namely free-living, nomadic and host-adapted, as characterized by the variations of bacterial occurrence time, guanine–cytosine (GC) content and genome size, evolution event frequency, and the presence of human-adapted bacterial genes. The numbers and activity of host-adapted factors, such as bile salt hydrolase and intestinal tissue-anchored elements, were distinctly distributed among the three lifestyles. The strains of the three lifestyles could be separated with such a collection of colonization-related genomic content (genes, genome size and GC content). Thus, our work provided valuable information for rational selection and gut engraftment prediction of probiotics. Here, we have found many interesting predictive results for bacterial gut fitness, which will be validated and .

Funding
This study was supported by the:
  • Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province (Award Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province)
    • Principle Award Recipient: WeiChen
  • the BBSRC Newton Fund Joint Centre Award (Award the BBSRC Newton Fund Joint Centre Award)
    • Principle Award Recipient: WeiChen
  • National First-Class Discipline Program of Food Science and Technology (Award JUFSTR20180102)
    • Principle Award Recipient: WeiChen
  • National Key Research and Development Project (Award No. 2018YFC1604206)
    • Principle Award Recipient: WeiChen
  • Projects of Innovation and Development Pillar Program for Key Industries in Southern Xinjiang of Xinjiang Production and Construction Corps (Award 2018DB002)
    • Principle Award Recipient: WeiChen
  • the National Natural Science Foundation of China Program (Award No. 31871773)
    • Principle Award Recipient: QixiaoZhai
  • the National Natural Science Foundation of China Program (Award No.31820103010)
    • Principle Award Recipient: WeiChen
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000581
2021-06-08
2022-01-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/6/mgen000581.html?itemId=/content/journal/mgen/10.1099/mgen.0.000581&mimeType=html&fmt=ahah

References

  1. Quigley EMM. Prebiotics and probiotics; modifying and mining the microbiota. Pharmacol Res 2010; 61:213–218 [View Article]
    [Google Scholar]
  2. Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP. Lactobacillus reuteri induces gut intraepithelial CD4+ CD8αα+ T cells. Science 2017; 357:806–810
    [Google Scholar]
  3. Tan TG, Sefik E, Geva-Zatorsky N, Kua L, Naskar D et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S A 2016; 113:E8141–E8150 [View Article]
    [Google Scholar]
  4. Van Baarlen P, Troost FJ, van Hemert S, van der Meer C, de Vos WM et al. Differential NF-κB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci U S A 2009; 106:2371–2376 [View Article]
    [Google Scholar]
  5. Ganesh BP, Hall A, Ayyaswamy S, Nelson JW, Fultz R et al. Diacylglycerol kinase synthesized by commensal Lactobacillus reuteri diminishes protein kinase C phosphorylation and histamine-mediated signaling in the mammalian intestinal epithelium. Mucosal Immunol 2018; 11:380–393 [View Article]
    [Google Scholar]
  6. Ruiz PA, Hoffmann M, Szcesny S, Blaut M, Haller D. Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germ-free rats. Immunology 2005; 115:441–450 [View Article]
    [Google Scholar]
  7. Kozakova H, Schwarzer M, Tuckova L, Srutkova D, Czarnowska E et al. Colonization of germ-free mice with a mixture of three Lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell Mol Immunol 2016; 13:251–262 [View Article]
    [Google Scholar]
  8. Jain PK, McNaught CE, Anderson ADG, MacFie J, Mitchell CJ. Influence of synbiotic containing Lactobacillus acidophilus La5, Bifidobacterium lactis Bb 12, Streptococcus thermophilus, Lactobacillus bulgaricus and oligofructose on gut barrier function and sepsis in critically ill patients: a randomised controlled trial. Clinical Nutrition 2004; 23:467–475 [View Article]
    [Google Scholar]
  9. Denou E, Pridmore RD, Berger B, Panoff J-M, Arigoni F et al. Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis. J Bacteriol 2008; 190:3161–3168 [View Article]
    [Google Scholar]
  10. Marco ML, Bongers RS, de Vos WM, Kleerebezem M. Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice. Appl Environ Microbiol 2007; 73:124–132 [View Article]
    [Google Scholar]
  11. Tang W, Xing Z, Hu W, Li C, Wang J et al. Antioxidative effects in vivo and colonization of Lactobacillus plantarum MA2 in the murine intestinal tract. Appl Microbiol Biotechnol 2016; 100:7193–7202 [View Article]
    [Google Scholar]
  12. Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 2017; 168:928–943 [View Article]
    [Google Scholar]
  13. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc Natl Acad Sci U S A 2009; 106:17193–17198 [View Article]
    [Google Scholar]
  14. Tannock GW, Munro K, Harmsen HJM, Welling GW, Smart J et al. Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosusDR20. Appl Environ Microbiol 2000; 66:2578–2588 [View Article]
    [Google Scholar]
  15. Maldonado-Gómez MX, Martínez I, Bottacini F, O'Callaghan A, Ventura M et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 2016; 20:515–526 [View Article][PubMed]
    [Google Scholar]
  16. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus . FEMS Microbiol Rev 2017; 41:S27–S48 [View Article]
    [Google Scholar]
  17. Turroni F, Serafini F, Foroni E, Duranti S, O'Connell Motherway M et al. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions. Proc Natl Acad Sci U S A 2013; 110:11151–11156 [View Article][PubMed]
    [Google Scholar]
  18. Tannock GW, Ghazally S, Walter J, Loach D, Brooks H et al. Ecological behavior of Lactobacillus reuteri 100-23 is affected by mutation of the luxS gene. Appl Environ Microbiol 2005; 71:8419–8425 [View Article]
    [Google Scholar]
  19. Christiaen SEA, O'Connell Motherway M, Bottacini F, Lanigan N, Casey PG et al. Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium breve UCC2003. PLoS One 2014; 9:e98111 [View Article]
    [Google Scholar]
  20. DiMarzio MJ. Hijacking Host Metabolism with Lactobacillus-understanding the Implications of Bile Salt Hydrolase Diversity The Pennsylvania State University; 2016
    [Google Scholar]
  21. Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 2008; 74:4985–4996 [View Article]
    [Google Scholar]
  22. Jacobsen CN, Rosenfeldt Nielsen V, Hayford AE, Møller PL, Michaelsen KF et al. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 1999; 65:4949–4956 [View Article]
    [Google Scholar]
  23. Walter J, Maldonado-Gómez MX, Martínez I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr Opin Biotechnol 2018; 49:129–139 [View Article]
    [Google Scholar]
  24. Odamaki T, Bottacini F, Kato K, Mitsuyama E, Yoshida K et al. Genomic diversity and distribution of Bifidobacterium longum subsp. longum across the human lifespan. Sci Rep 2018; 8:85 [View Article]
    [Google Scholar]
  25. PL O, Benson AK, Peterson DA, Patil PB, Moriyama EN. Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. Isme J 2010; 4:377–387
    [Google Scholar]
  26. Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P et al. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ Microbiol 2016; 18:4974–4989 [View Article]
    [Google Scholar]
  27. Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL. Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome Biol Evol 2009; 1:239–257 [View Article]
    [Google Scholar]
  28. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae . Int J Syst Evol Microbiol 2020; 70:2782–2858 [View Article]
    [Google Scholar]
  29. Battistuzzi FU, Feijao A, Hedges SB. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 2004; 4:44 [View Article]
    [Google Scholar]
  30. Steinkraus KH. Fermentations in world food processing. Comp Rev Food Sci Food Safety 2002; 1:23–32 [View Article]
    [Google Scholar]
  31. Hayden B, Canuel N, Shanse J. What was brewing in the Natufian? an archaeological assessment of brewing technology in the Epipaleolithic. J Archaeol Method Theory 2013; 20:102–150 [View Article]
    [Google Scholar]
  32. van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K et al. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A 2006; 103:9274–9279 [View Article]
    [Google Scholar]
  33. Pfeiler EA, Klaenhammer TR. The genomics of lactic acid bacteria. Trends Microbiol 2007; 15:546–553 [View Article]
    [Google Scholar]
  34. Ruas-Madiedo P, Gueimonde M, Fernández-García M, de los Reyes-Gavilán CG, Margolles A. Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl Environ Microbiol 2008; 74:1936–1940 [View Article][PubMed]
    [Google Scholar]
  35. Turroni F, Bottacini F, Foroni E, Mulder I, Kim J-H et al. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci U S A 2010; 107:19514–19519 [View Article]
    [Google Scholar]
  36. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 2003; 100:1990–1995 [View Article]
    [Google Scholar]
  37. Cui Y, Yang X, Didelot X, Guo C, Li D et al. Epidemic clones, oceanic gene pools, and eco-LD in the free living marine pathogen Vibrio parahaemolyticus . Mol Biol Evol 2015; 32:1396–1410 [View Article]
    [Google Scholar]
  38. Delcher AL, Salzberg SL, Phillippy AM. Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinformatics 2003; 00:10.13. 11-10.13. 18 [View Article]
    [Google Scholar]
  39. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  40. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article]
    [Google Scholar]
  41. Huelsenbeck JP, Bollback JP, Levine AM. Inferring the root of a phylogenetic tree. Syst Biol 2002; 51:32–43 [View Article]
    [Google Scholar]
  42. Ventura M, O'Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR et al. Genome-Scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 2009; 7:61–71 [View Article]
    [Google Scholar]
  43. Maddison WP, Donoghue MJ, Maddison DR. Outgroup analysis and parsimony. Syst Biol 1984; 33:83–103 [View Article]
    [Google Scholar]
  44. Wheeler WC. Nucleic acid sequence phylogeny and random outgroups. Cladistics 1990; 6:363–367 [View Article]
    [Google Scholar]
  45. Sun Z, Harris HMB, McCann A, Guo C, Argimón S et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun 2015; 6:8322 [View Article]
    [Google Scholar]
  46. Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol 2015; 11:e1004041 [View Article]
    [Google Scholar]
  47. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article]
    [Google Scholar]
  48. Bansal K, Midha S, Kumar S, Patil PB. Ecological and evolutionary insights into pathovar diversity of Xanthomonas citri . Appl Environ Microbiol 2017
    [Google Scholar]
  49. Song Z, Cai Y, Lao X, Wang X, Lin X et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome 2019; 7:9 [View Article][PubMed]
    [Google Scholar]
  50. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article]
    [Google Scholar]
  51. Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L et al. Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol 2016; 82:980–991 [View Article]
    [Google Scholar]
  52. Harris HMB, Bourin MJB, Claesson MJ, O'Toole PW. Phylogenomics and comparative genomics of Lactobacillus salivarius, a mammalian gut commensal. Microbial Genomics 2017; 3: [View Article]
    [Google Scholar]
  53. Wuyts S, Wittouck S, De Boeck I, Allonsius CN, Pasolli E et al. Large-scale phylogenomics of the Lactobacillus casei group highlights taxonomic inconsistencies and reveals novel clade-associated features. mSystems 2017; 2:e00061–00017 [View Article]
    [Google Scholar]
  54. Martens EC, Chiang HC, Gordon JI. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 2008; 4:447–457 [View Article]
    [Google Scholar]
  55. Sonnenburg JL, Xu J, Leip DD, Chen C-. H, Westover BP et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005; 307:1955–1959 [View Article]
    [Google Scholar]
  56. Ravcheev DA, Thiele I. Comparative genomic analysis of the human gut microbiome reveals a broad distribution of metabolic pathways for the degradation of host-synthetized mucin glycans and utilization of mucin-derived monosaccharides. Front Genet 2017; 8:111 [View Article][PubMed]
    [Google Scholar]
  57. Chewapreecha C, Holden MTG, Vehkala M, Välimäki N, Yang Z et al. Global and regional dissemination and evolution of Burkholderia pseudomallei . Nat Microbiol 2017; 2:16263 [View Article]
    [Google Scholar]
  58. Lees JA, Galardini M, Bentley SD, Weiser JN, Corander J. pyseer: a comprehensive tool for microbial pangenome-wide association studies. Bioinformatics 2018; 34:4310–4312 [View Article]
    [Google Scholar]
  59. Cesena C, Morelli L, Alander M, Siljander T, Tuomola E et al. Lactobacillus crispatus and its nonaggregating mutant in human colonization trials. J Dairy Sci 2001; 84:1001–1010 [View Article]
    [Google Scholar]
  60. O'Connell Motherway M, Zomer A, Leahy SC, Reunanen J, Bottacini F et al. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (TAD) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci U S A 2011; 108:11217–11222 [View Article]
    [Google Scholar]
  61. Sequeira S, Kavanaugh D, MacKenzie DA, Walpole S et al. Structural basis for the role of serine-rich repeat proteins from Lactobacillus reuteri in gut microbe–host interactions. Proc Natl Acad Sci U S A 2018; 115:E2706–E2715 [View Article]
    [Google Scholar]
  62. Tang C, Kakuta S, Shimizu K, Kadoki M, Kamiya T et al. Suppression of IL-17F, but not of IL-17A, provides protection against colitis by inducing Treg cells through modification of the intestinal microbiota. Nat Immunol 2018; 19:755–765 [View Article]
    [Google Scholar]
  63. Menousek J, Mishra B, Hanke ML, Heim CE, Kielian T et al. Database screening and in vivo efficacy of antimicrobial peptides against methicillin-resistant Staphylococcus aureus USA300. Int J Antimicrob Agents 2012; 39:402–406 [View Article]
    [Google Scholar]
  64. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013; 39:372–385 [View Article]
    [Google Scholar]
  65. Yang C, Pei X, Wu Y, Yan L, Yan Y. Recent mixing of Vibrio parahaemolyticus populations. ISME J 2019; 1:
    [Google Scholar]
  66. Lo W-S, Huang Y-Y, Kuo C-H. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev 2016; 40:855–874 [View Article]
    [Google Scholar]
  67. Duar RM, Frese SA, Lin XB, Fernando SC, Burkey TE et al. Experimental evaluation of host adaptation of Lactobacillus reuteri to different vertebrate species. Appl Environ Microbiol 2017; 83:e00132–00117 [View Article]
    [Google Scholar]
  68. Frese SA, Benson AK, Tannock GW, Loach DM, Kim J et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri . PLoS Genet 2011; 7:e1001314 [View Article]
    [Google Scholar]
  69. Spinler JK, Sontakke A, Hollister EB, Venable SF, Oh PL et al. From prediction to function using evolutionary genomics: human-specific ecotypes of Lactobacillus reuteri have diverse probiotic functions. Genome Biol Evol 2014; 6:1772–1789 [View Article][PubMed]
    [Google Scholar]
  70. Bottacini F, Milani C, Turroni F, Sánchez B, Foroni E et al. Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. PLoS One 2012; 7:e44229 [View Article]
    [Google Scholar]
  71. Wang Z, Zeng X, Mo Y, Smith K, Guo Y et al. Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters. Appl Environ Microbiol 2012; 78:8795–8802 [View Article]
    [Google Scholar]
  72. Corzo G, Gilliland SE. Bile salt hydrolase activity of three strains of Lactobacillus acidophilus . J Dairy Sci 1999; 82:472–480 [View Article]
    [Google Scholar]
  73. Kim G-B, Miyamoto CM, Meighen EA, Lee BH. Cloning and characterization of the bile salt hydrolase genes (BSH) from Bifidobacterium bifidum strains. Appl Environ Microbiol 2004; 70:5603–5612 [View Article]
    [Google Scholar]
  74. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010; 107:14691–14696 [View Article]
    [Google Scholar]
  75. Coleman JP, Hudson LL. Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridium perfringens . Appl Environ Microbiol 1995; 61:2514–2520 [View Article]
    [Google Scholar]
  76. Stellwag EJ, Hylemon PB. Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis . Biochimica et Biophysica Acta (BBA) - Enzymology 1976; 452:165–176 [View Article]
    [Google Scholar]
  77. Chae JP, Valeriano VD, Kim G-B, Kang D-K. Molecular cloning, characterization and comparison of bile salt hydrolases from Lactobacillus johnsonii PF01. J Appl Microbiol 2013; 114:121–133 [View Article]
    [Google Scholar]
  78. Bi J, Fang F, Lu S, Du G, Chen J. New insight into the catalytic properties of bile salt hydrolase. J Mol Catal B Enzym 2013; 96:46–51 [View Article]
    [Google Scholar]
  79. Ndeh D, Rogowski A, Cartmell A, Luis AS, Baslé A et al. Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 2017; 544:65–70 [View Article]
    [Google Scholar]
  80. Kazazian HH. Mobile elements: drivers of genome evolution. Science 2004; 303:1626–1632 [View Article]
    [Google Scholar]
  81. Mazel D. Integrons: agents of bacterial evolution. Nat Rev Microbiol 2006; 4:608–620 [View Article][PubMed]
    [Google Scholar]
  82. Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C et al. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A 2004; 101:2512–2517 [View Article]
    [Google Scholar]
  83. A. Frese S, W. Hutkins R, Walter J. Comparison of the colonization ability of autochthonous and Allochthonous strains of lactobacilli in the human gastrointestinal tract. Adv Microbiol 2012; 02:399–409 [View Article]
    [Google Scholar]
  84. Rollan G, Lorca GL, Font de Valdez G, de Valdez GF. Arginine catabolism and acid tolerance response in Lactobacillus reuteri isolated from sourdough. Food Microbiol 2003; 20:313–319 [View Article]
    [Google Scholar]
  85. GANZLE M, Vogel RF. Contribution of reutericyclin production to the stable persistence of Lactobacillus reuteri in an industrial sourdough fermentation. Int J Food Microbiol 2003; 80:31–45 [View Article]
    [Google Scholar]
  86. Rossi M, Martínez‐Martínez D, Amaretti A, Ulrici A, Raimondi S et al. Mining metagenomic whole genome sequences revealed subdominant but constant Lactobacillus population in the human gut microbiota. Environ Microbiol Rep 2016; 8:399–406 [View Article]
    [Google Scholar]
  87. Underwood MA, German JB, Lebrilla CB, Mills DA. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res 2015; 77:229–235 [View Article]
    [Google Scholar]
  88. Yanokura E, Oki K, Makino H, Modesto M, Pot B et al. Subspeciation of Bifidobacterium longum by multilocus approaches and amplified fragment length polymorphism: description of B. longum subsp. suillum subsp. nov., isolated from the faeces of piglets. Syst Appl Microbiol 2015; 38:305–314 [View Article]
    [Google Scholar]
  89. Didelot X, Maiden MCJ. Impact of recombination on bacterial evolution. Trends Microbiol 2010; 18:315–322 [View Article]
    [Google Scholar]
  90. Johansson ML, Molin G, Jeppsson B, Nobaek S, Ahrné S et al. Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora. Appl Environ Microbiol 1993; 59:15–20 [View Article]
    [Google Scholar]
  91. Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L et al. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep 2015; 5:15782 [View Article]
    [Google Scholar]
  92. Kaoutari AE, Armougom F, Gordon JI, Raoult D, Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 2013; 11:497–504 [View Article]
    [Google Scholar]
  93. Xiao Y, Zhai Q, Zhang H, Chen W, Hill C. Gut colonization mechanisms of Lactobacillus and Bifidobacterium: an argument for personalized designs.. Annu Rev Food Sci Technol 2020; 12:
    [Google Scholar]
  94. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat 20011189–1232
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000581
Loading
/content/journal/mgen/10.1099/mgen.0.000581
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error