
Full text loading...
Travel to tropical regions is associated with high risk of acquiring extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E) that are typically cleared in less than 3 months following return. The conditions leading to persistent carriage that exceeds 3 months in some travellers require investigation. Whole-genome sequencing (Illumina MiSeq) was performed on the 82 ESBL-E isolates detected upon return and 1, 2, 3, 6 and 12 months later from the stools of 11 long-term (>3 months) ESBL-E carriers following travel abroad. One to five different ESBL Escherichia coli strains were detected per traveller upon return, and this diminished to one after 3 months. Long-term carriage was due to the presence of the same ESBL E. coli strain, for more than 3 months, in 9 out of 11 travellers, belonging to epidemic sequence type complexes (STc 10, 14, 38, 69, 131 and 648). The mean carriage duration of strains belonging to phylogroups B2/D/F, associated with extra-intestinal virulence, was higher than that for commensal-associated A/B1/E phylogroups (3.5 vs 0.5 months, P=0.021). Genes encoding iron capture systems (fyuA, irp), toxins (senB, sat), adhesins (flu, daaF, afa/nfaE, pap, ecpA) and colicin (cjrA) were more often present in persistent strains than in transient ones. Single-nucleotide polymorphism (SNP) analysis in persistent strains showed a maximum divergence of eight SNPs over 12 months without signs of adaptation. Genomic plasticity was observed during the follow-up with the loss or gain of mobile genetic elements such as plasmids, integrons and/or transposons that may contain resistance genes at different points in the follow-up. Long-term colonization of ESBL-E following travel is primarily due to the acquisition of E. coli strains belonging to epidemic clones and harbouring ‘virulence genes’, allowing good adaptation to the intestinal microbiota.
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements