1887

Abstract

Fungal infections cause >1 million deaths annually and the emergence of antifungal resistance has prompted the exploration for novel antifungal targets. Quadruplexes are four-stranded nucleic acid secondary structures, which can regulate processes such as transcription, translation, replication and recombination. They are also found in genes linked to virulence in microbes, and ligands that bind to quadruplexes can eliminate drug-resistant pathogens. Using a computational approach, we quantified putative quadruplex-forming sequences (PQS) in 1359 genomes across the fungal kingdom and explored their presence in genes related to virulence, drug resistance and biological processes associated with pathogenicity in . Here we present the largest analysis of PQS in fungi and identify significant heterogeneity of these sequences throughout phyla, genera and species. PQS were genetically conserved in spp. and frequently pathogenic species appeared to contain fewer PQS than their lesser/non-pathogenic counterparts. GO-term analysis identified that PQS-containing genes were involved in processes linked with virulence such as zinc ion binding, the biosynthesis of secondary metabolites and regulation of transcription in . Although the genome frequency of PQS was lower in , PQS could be found enriched in genes involved in virulence, and genes upregulated during germination and hypoxia. Moreover, PQS were found in genes involved in drug resistance. Quadruplexes could have important roles within fungal biology and virulence, but their roles require further elucidation.

Funding
This study was supported by the:
  • Czech Science Foundation (Award 18-15548S)
    • Principle Award Recipient: VáclavBrázda
  • Wellcome Trust (Award 204515/Z/16/Z)
    • Principle Award Recipient: ZoëA. E. Waller
  • Biotechnology and Biological Sciences Research Council (Award BB/L02229X/1)
    • Principle Award Recipient: ZoëA. E. Waller
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000570
2021-05-06
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/5/mgen000570.html?itemId=/content/journal/mgen/10.1099/mgen.0.000570&mimeType=html&fmt=ahah

References

  1. Correction Stop neglecting fungi. Nat Microbiol 2017; 2:17123 [View Article][PubMed]
    [Google Scholar]
  2. Skellam E. Strategies for engineering natural product biosynthesis in fungi. Trends Biotechnol 2019; 37:416–427 [View Article][PubMed]
    [Google Scholar]
  3. Hernández VA, Machuca Ángela, Saavedra I, Chavez D, Astuya A et al. Talaromyces australis and Penicillium murcianum pigment production in optimized liquid cultures and evaluation of their cytotoxicity in textile applications. World J Microbiol Biotechnol 2019; 35:160 [View Article][PubMed]
    [Google Scholar]
  4. Hooker CA, Lee KZ, Solomon KV. Leveraging anaerobic fungi for biotechnology. Curr Opin Biotechnol 2019; 59:103–110 [View Article][PubMed]
    [Google Scholar]
  5. Gallone B, Steensels J, Prahl T, Soriaga L, Saels V et al. Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell 2016; 166:1397–1410 [View Article][PubMed]
    [Google Scholar]
  6. Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG et al. Hidden killers: human fungal infections. Sci Transl Med 2012; 4:165rv13 [View Article][PubMed]
    [Google Scholar]
  7. Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H et al. Threats posed by the fungal Kingdom to humans, wildlife, and agriculture. mBio 2020; 11:e00449-20 05 05 2020 [View Article][PubMed]
    [Google Scholar]
  8. Köhler JR, Casadevall A, Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med 2014; 5:a019273 [View Article][PubMed]
    [Google Scholar]
  9. van Arkel ALE, Rijpstra TA, Belderbos HNA, van Wijngaarden P, Verweij PE et al. COVID-19-associated pulmonary Aspergillosis . Am J Respir Crit Care Med 2020; 202:132–135 [View Article][PubMed]
    [Google Scholar]
  10. Ramirez-Garcia A, Pellon A, Rementeria A, Buldain I, Barreto-Bergter E et al. Scedosporium and Lomentospora: an updated overview of underrated opportunists. Med Mycol 2018; 56:102–125 [View Article][PubMed]
    [Google Scholar]
  11. Berman J, Krysan DJ. Drug resistance and tolerance in fungi. Nat Rev Microbiol 2020; 18:319–331 [View Article][PubMed]
    [Google Scholar]
  12. World Health O. First Meeting of the WHO Antifungal Expert Group on Identifying Priority Fungal Pathogens: Meeting Report Geneva: World Health Organization; 2020
    [Google Scholar]
  13. Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol 2020; 21:459–474 [View Article][PubMed]
    [Google Scholar]
  14. Abou Assi H, Garavís M, González C, Damha MJ. i-Motif DNA: structural features and significance to cell biology. Nucleic Acids Res 2018; 46:8038–8056 [View Article][PubMed]
    [Google Scholar]
  15. Marsico G, Chambers VS, Sahakyan AB, McCauley P, Boutell JM et al. Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res 2019; 47:3862–3874 [View Article][PubMed]
    [Google Scholar]
  16. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 2006; 34:5402–5415 [View Article][PubMed]
    [Google Scholar]
  17. Dai J, Dexheimer TS, Chen D, Carver M, Ambrus A et al. An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. J Am Chem Soc 2006; 128:1096–1098 [View Article][PubMed]
    [Google Scholar]
  18. Víglaský V, Bauer L, Tlucková K. Structural features of intra- and intermolecular G-quadruplexes derived from telomeric repeats. Biochemistry 2010; 49:2110–2120 [View Article][PubMed]
    [Google Scholar]
  19. Lane AN, Chaires JB, Gray RD, Trent JO. Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 2008; 36:5482–5515 [View Article][PubMed]
    [Google Scholar]
  20. Brazier JA, Shah A, Brown GD. I-motif formation in gene promoters: unusually stable formation in sequences complementary to known G-quadruplexes. Chem Commun 2012; 48:10739–10741 [View Article][PubMed]
    [Google Scholar]
  21. Gehring K, Leroy JL, Guéron M. A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature 1993; 363:561–565 [View Article][PubMed]
    [Google Scholar]
  22. Wright EP, Huppert JL, Waller ZAE. Identification of multiple genomic DNA sequences which form i-motif structures at neutral pH. Nucleic Acids Res 2017; 45:2951–2959 [View Article][PubMed]
    [Google Scholar]
  23. Rajendran A, Nakano S-ichi, Sugimoto N. Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. Chem Commun 2010; 46:1299–1301 [View Article][PubMed]
    [Google Scholar]
  24. Zeraati M, Langley DB, Schofield P, Moye AL, Rouet R et al. I-motif DNA structures are formed in the nuclei of human cells. Nat Chem 2018; 10:631–637 [View Article][PubMed]
    [Google Scholar]
  25. Saranathan N, Vivekanandan P. G-quadruplexes: more than just a kink in microbial genomes. Trends Microbiol 2019; 27:148–163 [View Article][PubMed]
    [Google Scholar]
  26. Balasubramanian S, Hurley LH, Neidle S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?. Nat Rev Drug Discov 2011; 10:261–275 [View Article][PubMed]
    [Google Scholar]
  27. Zhang Y, Yang M, Duncan S, Yang X, Abdelhamid MAS et al. G-quadruplex structures trigger RNA phase separation. Nucleic Acids Res 2019; 47:11746–11754 [View Article][PubMed]
    [Google Scholar]
  28. Bartas M, Čutová M, Brázda V, Kaura P, Šťastný J et al. The presence and localization of G-quadruplex forming sequences in the domain of bacteria. Molecules 2019; 24:E1711 02 May 2019 [View Article][PubMed]
    [Google Scholar]
  29. Shankar U, Jain N, Mishra SK, Sharma TK, Kumar A. Conserved G-quadruplex motifs in gene promoter region reveals a novel therapeutic approach to target multi-drug resistance Klebsiella pneumoniae . Front Microbiol 2020; 11:1269 [View Article][PubMed]
    [Google Scholar]
  30. Shankar U, Jain N, Majee P, Kodgire P, Sharma TK et al. Exploring computational and biophysical tools to study the presence of G-quadruplex structures: a promising therapeutic solution for drug-resistant Vibrio cholerae . Front Genet 2020; 11:935 [View Article][PubMed]
    [Google Scholar]
  31. Jain N, Mishra SK, Shankar U, Jaiswal A, Sharma TK et al. G-quadruplex stabilization in the ions and maltose transporters gene inhibit Salmonella enterica growth and virulence. Genomics 2020; 112:4863–4874 [View Article][PubMed]
    [Google Scholar]
  32. Majee P, Shankar U, Pasadi S, Muniyappa K, Nayak D et al. Genome-wide analysis reveals a regulatory role for G-quadruplexes during Adenovirus multiplication. Virus Res 2020; 283:197960 [View Article][PubMed]
    [Google Scholar]
  33. Majee P, Kumar Mishra S, Pandya N, Shankar U, Pasadi S et al. Identification and characterization of two conserved G-quadruplex forming motifs in the Nipah virus genome and their interaction with G-quadruplex specific ligands. Sci Rep 2020; 10:1477 [View Article][PubMed]
    [Google Scholar]
  34. Majee P, Pattnaik A, Sahoo BR, Shankar U, Pattnaik AK et al. Inhibition of Zika virus replication by G-quadruplex-binding ligands. Mol Ther Nucleic Acids 2021; 23:691–701 [View Article][PubMed]
    [Google Scholar]
  35. Li F, Mulyana Y, Feterl M, Warner JM, Collins JG et al. The antimicrobial activity of inert oligonuclear polypyridylruthenium(II) complexes against pathogenic bacteria, including MRSA. Dalton Trans 2011; 40:5032–5038 [View Article][PubMed]
    [Google Scholar]
  36. Li F, Collins JG, Keene FR. Ruthenium complexes as antimicrobial agents. Chem Soc Rev 2015; 44:2529–2542 [View Article][PubMed]
    [Google Scholar]
  37. Ruggiero E, Lago S, Šket P, Nadai M, Frasson I et al. A dynamic i-motif with a duplex stem-loop in the long terminal repeat promoter of the HIV-1 proviral genome modulates viral transcription. Nucleic Acids Res 2019; 47:11057–11068 [View Article][PubMed]
    [Google Scholar]
  38. Asamitsu S, Obata S, Yu Z, Bando T, Sugiyama H. Recent progress of targeted G-Quadruplex-Preferred ligands toward cancer therapy. Molecules 2019; 24:E429 24 Jan 2019 [View Article][PubMed]
    [Google Scholar]
  39. Ruggiero E, Richter SN. G-Quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res 2018; 46:3270–3283 [View Article][PubMed]
    [Google Scholar]
  40. Tassinari M, Zuffo M, Nadai M, Pirota V, Sevilla Montalvo AC et al. Selective targeting of mutually exclusive DNA G-quadruplexes: HIV-1 LTR as paradigmatic model. Nucleic Acids Res 2020; 48:4627–4642 [View Article][PubMed]
    [Google Scholar]
  41. Shen X-X, Steenwyk JL, LaBella AL, Opulente DA, Zhou X et al. Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota . Sci Adv 2020; 6: 04 11 2020 [View Article][PubMed]
    [Google Scholar]
  42. Brázda V, Kolomazník J, Lýsek J, Bartas M, Fojta M et al. G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics 2019; 35:3493–3495 [View Article][PubMed]
    [Google Scholar]
  43. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. Panther version 14: more genomes, a new Panther GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 2019; 47:D419–d426 [View Article][PubMed]
    [Google Scholar]
  44. Priebe S, Kreisel C, Horn F, Guthke R, Linde J. FungiFun2: a comprehensive online resource for systematic analysis of gene lists from fungal species. Bioinformatics 2015; 31:445–446 [View Article][PubMed]
    [Google Scholar]
  45. Kikin O, D'Antonio L, Bagga PS. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res 2006; 34:W676–682 [View Article][PubMed]
    [Google Scholar]
  46. Tomasello G, Armenia I, Molla G. The Protein Imager: a full-featured online molecular viewer interface with server-side HQ-rendering capabilities. Bioinformatics 2020; 36:2909–2911 [View Article][PubMed]
    [Google Scholar]
  47. Hagiwara D, Takahashi H, Kusuya Y, Kawamoto S, Kamei K et al. Comparative transcriptome analysis revealing dormant conidia and germination associated genes in Aspergillus species: an essential role for AtfA in conidial dormancy. BMC Genomics 2016; 17:358 [View Article][PubMed]
    [Google Scholar]
  48. Hillmann F, Linde J, Beckmann N, Cyrulies M, Strassburger M et al. The novel globin protein fungoglobin is involved in low oxygen adaptation of Aspergillus fumigatus . Mol Microbiol 2014; 93:539–553 [View Article][PubMed]
    [Google Scholar]
  49. Kurucz V, Krüger T, Antal K, Dietl A-M, Haas H et al. Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron depletion. BMC Genomics 2018; 19:357 [View Article][PubMed]
    [Google Scholar]
  50. Stajich JE, Harris T, Brunk BP, Brestelli J, Fischer S et al. FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res 2012; 40:D675–681 [View Article][PubMed]
    [Google Scholar]
  51. Gibbons JG, Beauvais A, Beau R, McGary KL, Latgé J-P et al. Global transcriptome changes underlying colony growth in the opportunistic human pathogen Aspergillus fumigatus . Eukaryot Cell 2012; 11:68–78 [View Article][PubMed]
    [Google Scholar]
  52. Steenwyk JL, Shen X-X, Lind AL, Goldman GH, Rokas A. A robust phylogenomic time tree for biotechnologically and medically important fungi in the genera Aspergillus and Penicillium . mBio 2019; 10:e00925-19 09 07 2019 [View Article][PubMed]
    [Google Scholar]
  53. Bedrat A, Lacroix L, Mergny J-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res 2016; 44:1746–1759 [View Article][PubMed]
    [Google Scholar]
  54. Bedrat A, Lacroix L, Mergny J-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res 2016; 44:1746–1759 [View Article][PubMed]
    [Google Scholar]
  55. Levdansky E, Romano J, Shadkchan Y, Sharon H, Verstrepen KJ et al. Coding tandem repeats generate diversity in Aspergillus fumigatus genes. Eukaryot Cell 2007; 6:1380–1391 [View Article][PubMed]
    [Google Scholar]
  56. Jara-Espejo M, Fleming AM, Burrows CJ. Potential G-quadruplex forming sequences and N-Methyladenosine colocalize at human pre-mRNA intron splice sites. ACS Chem Biol 2020; 15:1292–1300 [View Article][PubMed]
    [Google Scholar]
  57. Mead ME, Knowles SL, Raja HA, Beattie SR, Kowalski CH et al. Characterizing the pathogenic, genomic, and chemical traits of Aspergillus fischeri, a close relative of the major human fungal pathogen Aspergillus fumigatus . mSphere 2019; 4:e00018-19 20 02 2019 [View Article][PubMed]
    [Google Scholar]
  58. Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A et al. G-quadruplex-induced instability during leading-strand replication. Embo J 2011; 30:4033–4046 [View Article][PubMed]
    [Google Scholar]
  59. Guo JU, Bartel DP. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science, 2016; 353:
    [Google Scholar]
  60. Hershman SG, Chen Q, Lee JY, Kozak ML, Yue P et al. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae . Nucleic Acids Res 2008; 36:144–156 [View Article][PubMed]
    [Google Scholar]
  61. Čutová M, Manta J, Porubiaková O, Kaura P, Šťastný J et al. Divergent distributions of inverted repeats and G-quadruplex forming sequences in Saccharomyces cerevisiae . Genomics 2020; 112:1897–1901 [View Article][PubMed]
    [Google Scholar]
  62. Bartas M, Brázda V, Bohálová N, Cantara A, Volná A et al. In-depth bioinformatic analyses of nidovirales including human SARS-CoV-2, SARS-CoV, MERS-CoV viruses suggest important roles of non-canonical nucleic acid structures in their lifecycles. Front Microbiol 2020; 11:1583 [View Article][PubMed]
    [Google Scholar]
  63. Tosoni E, Frasson I, Scalabrin M, Perrone R, Butovskaya E et al. Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription. Nucleic Acids Res 2015; 43:8884–8897 [View Article][PubMed]
    [Google Scholar]
  64. Wasylnka JA, Moore MM. Aspergillus fumigatus conidia survive and germinate in acidic organelles of A549 epithelial cells. J Cell Sci 2003; 116:1579–1587 [View Article][PubMed]
    [Google Scholar]
  65. Coelho C, Bocca AL, Casadevall A. The intracellular life of Cryptococcus neoformans . Annu Rev Pathol 2014; 9:219–238 [View Article][PubMed]
    [Google Scholar]
  66. Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS Microbiol Rev 2018; 42: 01 01 2018 [View Article][PubMed]
    [Google Scholar]
  67. Ene IV, Brunke S, Brown AJP, Hube B. Metabolism in fungal pathogenesis. Cold Spring Harb Perspect Med 2014; 4:a019695 [View Article][PubMed]
    [Google Scholar]
  68. Stappers MHT, Clark AE, Aimanianda V, Bidula S, Reid DM et al. Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus . Nature 2018; 555:382–386 [View Article][PubMed]
    [Google Scholar]
  69. Raffa N, Keller NP. A call to arms: Mustering secondary metabolites for success and survival of an opportunistic pathogen. PLoS Pathog 2019; 15:e1007606 [View Article][PubMed]
    [Google Scholar]
  70. Rementeria A, López-Molina N, Ludwig A, Vivanco AB, Bikandi J et al. Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 2005; 22:1–23 [View Article][PubMed]
    [Google Scholar]
  71. Pradhan A, Ma Q, de Assis LJ, Leaves I, Larcombe DE et al. Anticipatory stress responses and immune evasion in fungal pathogens. Trends Microbiol 2020 12 Oct 2020 [View Article][PubMed]
    [Google Scholar]
  72. Brown AJP, Brown GD, Netea MG, Gow NAR. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol 2014; 22:614–622 [View Article][PubMed]
    [Google Scholar]
  73. Parente-Rocha JA, Bailão AM, Amaral AC, Taborda CP, Paccez JD et al. Antifungal resistance, metabolic routes as drug targets, and new antifungal agents: an overview about endemic dimorphic fungi. Mediators Inflamm 2017; 2017:9870679 [View Article][PubMed]
    [Google Scholar]
  74. Bignell E, Cairns TC, Throckmorton K, Nierman WC, Keller NP. Secondary metabolite arsenal of an opportunistic pathogenic fungus. Philos Trans R Soc Lond B Biol Sci 2016; 371: 05 12 2016 [View Article][PubMed]
    [Google Scholar]
  75. Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016; 532:64–68 [View Article][PubMed]
    [Google Scholar]
  76. Eddy J, Maizels N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res 2006; 34:3887–3896 [View Article][PubMed]
    [Google Scholar]
  77. Rawal P, Kummarasetti VBR, Ravindran J, Kumar N, Halder K et al. Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res 2006; 16:644–655 [View Article][PubMed]
    [Google Scholar]
  78. Mishra SK, Jain N, Shankar U, Tawani A, Sharma TK et al. Characterization of highly conserved G-quadruplex motifs as potential drug targets in Streptococcus pneumoniae . Sci Rep 2019; 9:1791 [View Article][PubMed]
    [Google Scholar]
  79. Harris LM, Monsell KR, Noulin F, Famodimu MT, Smargiasso N et al. G-Quadruplex DNA motifs in the malaria parasite Plasmodium falciparum and their potential as novel antimalarial drug targets. Antimicrob Agents Chemother 2018; 62: 23 02 2018 [View Article][PubMed]
    [Google Scholar]
  80. Mishra SK, Shankar U, Jain N, Sikri K, Tyagi JS et al. Characterization of G-Quadruplex Motifs in espB, espK, and cyp51 genes of Mycobacterium tuberculosis as potential drug targets. Mol Ther Nucleic Acids 2019; 16:698–706 [View Article][PubMed]
    [Google Scholar]
  81. Ruggiero E, Richter SN. Viral G-quadruplexes: New frontiers in virus pathogenesis and antiviral therapy. Annu Rep Med Chem 2020; 54:101–131 [View Article][PubMed]
    [Google Scholar]
  82. da Silva AR, de Andrade Neto JB, da Silva CR, Campos RdeS, Costa Silva RA et al. Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp. Antimicrob Agents Chemother 2016; 60:3551–3557 [View Article][PubMed]
    [Google Scholar]
  83. Lestrade PPA, Meis JF, Melchers WJG, Verweij PE. Triazole resistance in Aspergillus fumigatus: recent insights and challenges for patient management. Clin Microbiol Infect 2019; 25:799–806 [View Article][PubMed]
    [Google Scholar]
  84. Gonzalez-Jimenez I, Lucio J, Amich J, Cuesta I, Sanchez Arroyo R et al. A Cyp51B mutation contributes to azole resistance in Aspergillus fumigatus . J Fungi 2020; 6:e315 26 Nov 2020 [View Article][PubMed]
    [Google Scholar]
  85. Bok JW, Balajee SA, Marr KA, Andes D, Nielsen KF et al. LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell 2005; 4:1574–1582 [View Article][PubMed]
    [Google Scholar]
  86. Bok JW, Keller NP. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 2004; 3:527–535 [View Article][PubMed]
    [Google Scholar]
  87. Bultman KM, Kowalski CH, Cramer RA. Aspergillus fumigatus virulence through the lens of transcription factors. Med Mycol 2017; 55:24–38 [View Article][PubMed]
    [Google Scholar]
  88. Warner EF. Cross Kingdom analysis of putative quadruplex-forming sequences in fungal genomes: novel antifungal targets to ameliorate fungal pathogenicity?. bioRxiv 2020p. 2020.09.23.310581
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000570
Loading
/content/journal/mgen/10.1099/mgen.0.000570
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error