1887

Abstract

Cefotaxime (CTX) is a third-generation cephalosporin (3GC) commonly used to treat infections caused by . Two genetic mechanisms have been associated with 3GC resistance in . The first is the conjugative transfer of a plasmid harbouring antibiotic-resistance genes. The second is the introduction of mutations in the promoter region of the β-lactamase gene that cause chromosome-encoded β-lactamase hyperproduction. A wide variety of promoter mutations related to AmpC hyperproduction have been described. However, their link to CTX resistance has not been reported. We recultured 172 cefoxitin-resistant isolates with known CTX minimum inhibitory concentrations and performed genome-wide analysis of homoplastic mutations associated with CTX resistance by comparing Illumina whole-genome sequencing data of all isolates to a PacBio sequenced reference chromosome. We mapped the mutations on the reference chromosome and determined their occurrence in the phylogeny, revealing extreme homoplasy at the −42 position of the promoter. The 24 occurrences of a T at the −42 position rather than the wild-type C, resulted from 18 independent C>T mutations in five phylogroups. The −42 C>T mutation was only observed in lacking a plasmid-encoded gene. The association of the −42 C>T mutation with CTX resistance was confirmed to be significant (false discovery rate <0.05). To conclude, genome-wide analysis of homoplasy in combination with CTX resistance identifies the −42 C>T mutation of the promotor as significantly associated with CTX resistance and underlines the role of recurrent mutations in the spread of antibiotic resistance.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000556
2021-04-12
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/4/mgen000556.html?itemId=/content/journal/mgen/10.1099/mgen.0.000556&mimeType=html&fmt=ahah

References

  1. Gaynes R, Edwards JR. National Nosocomial Infections Surveillance System Overview of nosocomial infections caused by Gram-negative bacilli. Clin Infect Dis 2005; 41:848–854 [View Article][PubMed]
    [Google Scholar]
  2. Pitout JDD. Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol 2012; 3:9 [View Article][PubMed]
    [Google Scholar]
  3. Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev 2009; 22:161–182 [View Article]
    [Google Scholar]
  4. Martinez- L, Simonsen GS. EUCAST Detection of Resistance Mechanisms, 170711 ( https://aurosan.de/images/mediathek/servicematerial/EUCAST_detection_of_resistance_mechanisms.pdf) Växjö: European Committee on Antimicrobial Susceptibility Testing; 2017
    [Google Scholar]
  5. Tracz DM, Boyd DA, Bryden L, Hizon R, Giercke S et al. Increase in ampC promoter strength due to mutations and deletion of the attenuator in a clinical isolate of cefoxitin-resistant Escherichia coli as determined by RT-PCR. J Antimicrob Chemother 2005; 55:768–772 [View Article][PubMed]
    [Google Scholar]
  6. Tracz DM, Boyd DA, Hizon R, Bryce E, McGeer A et al. ampC gene expression in promoter mutants of cefoxitin-resistant Escherichia coli clinical isolates. FEMS Microbiol Lett 2007; 270:265–271 [View Article][PubMed]
    [Google Scholar]
  7. De Smet AMGA, Kluytmans JAJW, Cooper BS, Mascini EM, Benus RFJ et al. Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med 2009; 360:20–31 [View Article][PubMed]
    [Google Scholar]
  8. Aardema H, Bult W, Van Hateren K, Dieperink W, Touw DJ et al. Continuous versus intermittent infusion of cefotaxime in critically ill patients: a randomized controlled trial comparing plasma concentrations. J Antimicrob Chemother 2020; 75:441–448 [View Article][PubMed]
    [Google Scholar]
  9. Wake DB. Homoplasy: the result of natural selection, or evidence of design limitations?. Am Nat 1991; 138:543–567 [View Article]
    [Google Scholar]
  10. Crispell J, Balaz D, Gordon SV. HomoplasyFinder: a simple tool to identify homoplasies on a phylogeny. Microb Genom 2019; 5:000245 [View Article][PubMed]
    [Google Scholar]
  11. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969; 18:1–32 [View Article]
    [Google Scholar]
  12. Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR et al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis . Nat Genet 2013; 45:1183–1189 [View Article][PubMed]
    [Google Scholar]
  13. Mortimer TD, Weber AM, Pepperell CS. Signatures of selection at drug resistance loci in Mycobacterium tuberculosis . mSystems 2018; 3:e00108-17 [View Article][PubMed]
    [Google Scholar]
  14. Ruesen C, Chaidir L, van Laarhoven A, Dian S, Ganiem AR et al. Large-scale genomic analysis shows association between homoplastic genetic variation in Mycobacterium tuberculosis genes and meningeal or pulmonary tuberculosis. BMC Genomics 2018; 19:122 [View Article][PubMed]
    [Google Scholar]
  15. Miotto P, Cabibbe AM, Feuerriegel S, Casali N, Drobniewski F et al. Mycobacterium tuberculosis pyrazinamide resistance determinants: a multicenter study. mBio 2014; 5:e01819-14 [View Article][PubMed]
    [Google Scholar]
  16. Coolen JPM, Den Drijver EPM, Kluytmans JAJW, Verweij JJ, Lamberts BA et al. Development of an algorithm to discriminate between plasmid- and chromosomal-mediated AmpC β-lactamase production in Escherichia coli by elaborate phenotypic and genotypic characterization. J Antimicrob Chemother 2019; 74:3481–3488 [View Article][PubMed]
    [Google Scholar]
  17. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  18. Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb Genom 2018; 4:000192 [View Article][PubMed]
    [Google Scholar]
  19. Jolley KA, Maiden MCJ. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article][PubMed]
    [Google Scholar]
  20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  21. Peter-Getzlaff S, Polsfuss S, Poledica M, Hombach M, Giger J et al. Detection of AmpC beta-lactamase in Escherichia coli: comparison of three phenotypic confirmation assays and genetic analysis. J Clin Microbiol 2011; 49:2924–2932 [View Article][PubMed]
    [Google Scholar]
  22. Seemann T Abricate 2020 https://github.com/tseemann/abricate
  23. Caroff N, Espaze E, Gautreau D, Richet H, Reynaud A. Analysis of the effects of -42 and -32 ampC promoter mutations in clinical isolates of Escherichia coli hyperproducing AmpC. J Antimicrob Chemother 2000; 45:783–788 [View Article][PubMed]
    [Google Scholar]
  24. Siu LK, Lu P-L, Chen J-Y, Lin FM, Chang S-C. High-level expression of AmpC β-lactamase due to insertion of nucleotides between -10 and -35 promoter sequences in Escherichia coli clinical isolates: cases not responsive to extended-spectrum-cephalosporin treatment. Antimicrob Agents Chemother 2003; 47:2138–2144 [View Article][PubMed]
    [Google Scholar]
  25. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article][PubMed]
    [Google Scholar]
  26. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  27. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article][PubMed]
    [Google Scholar]
  28. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article][PubMed]
    [Google Scholar]
  29. EUCAST Breakpoint Tables for Interpretation of MICs and Zone Diameters, version 10.0 ( http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf) Växjö: European Committee on Antimicrobial Susceptibility Testing; 2020
    [Google Scholar]
  30. Mehta CR, Patel NR. A network algorithm for performing Fisher’s exact test in r × c contingency tables. J Am Stat Assoc 1983; 78:427–434
    [Google Scholar]
  31. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 1995; 57:289–300 [View Article]
    [Google Scholar]
  32. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012; 6:80–92 [View Article][PubMed]
    [Google Scholar]
  33. Zhou Z, Alikhan N-F, Mohamed K, Fan Y. Agama Study Group et al. The EnteroBase user's guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res 2020; 30:138–152 [View Article][PubMed]
    [Google Scholar]
  34. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article][PubMed]
    [Google Scholar]
  35. Lees JA, Galardini M, Bentley SD, Weiser JN, Corander J. pyseer: a comprehensive tool for microbial pangenome-wide association studies. Bioinformatics 2018; 34:4310–4312 [View Article][PubMed]
    [Google Scholar]
  36. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article][PubMed]
    [Google Scholar]
  37. Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article][PubMed]
    [Google Scholar]
  38. Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res 2004; 14:1188–1190 [View Article][PubMed]
    [Google Scholar]
  39. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19:1639–1645 [View Article][PubMed]
    [Google Scholar]
  40. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 2018; 34:292–293 [View Article][PubMed]
    [Google Scholar]
  41. Crispell J, Benton CH, Balaz D, De Maio N, Ahkmetova A et al. Combining genomics and epidemiology to analyse bi-directional transmission of Mycobacterium bovis in a multi-host system. Elife 2019; 8:e45833 [View Article][PubMed]
    [Google Scholar]
  42. Van Dorp L, Gelabert P, Rieux A, De Manuel M, De-Dios T et al. Plasmodium vivax malaria viewed through the lens of an eradicated European strain. Mol Biol Evol 2020; 37:773–785 [View Article][PubMed]
    [Google Scholar]
  43. Nelson EC, Elisha BG. Molecular basis of AmpC hyperproduction in clinical isolates of Escherichia coli . Antimicrob Agents Chemother 1999; 43:957–959 [View Article][PubMed]
    [Google Scholar]
  44. Mulvey MR, Bryce E, Boyd DA, Ofner-Agostini M, Land AM et al. Molecular characterization of cefoxitin-resistant Escherichia coli from Canadian hospitals. Antimicrob Agents Chemother 2005; 49:358–365 [View Article][PubMed]
    [Google Scholar]
  45. Yona AH, Alm EJ, Gore J. Random sequences rapidly evolve into de novo promoters. Nat Commun 2018; 9:1530 [View Article][PubMed]
    [Google Scholar]
  46. Liu S, Libchaber A. Some aspects of E. coli promoter evolution observed in a molecular evolution experiment. J Mol Evol 2006; 62:536–550 [View Article][PubMed]
    [Google Scholar]
  47. Korotkov KV, Sandkvist M, Hol WGJ. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 2012; 10:336–351 [View Article][PubMed]
    [Google Scholar]
  48. Ho TD, Davis BM, Ritchie JM, Waldor MK. Type 2 secretion promotes enterohemorrhagic Escherichia coli adherence and intestinal colonization. Infect Immun 2008; 76:1858–1865 [View Article][PubMed]
    [Google Scholar]
  49. Baldi DL, Higginson EE, Hocking DM, Praszkier J, Cavaliere R et al. The type II secretion system and its ubiquitous lipoprotein substrate, SslE, are required for biofilm formation and virulence of enteropathogenic Escherichia coli . Infect Immun 2012; 80:2042–2052 [View Article][PubMed]
    [Google Scholar]
  50. Kulkarni R, Dhakal BK, Slechta ES, Kurtz Z, Mulvey MA et al. Roles of putative type II secretion and type IV pilus systems in the virulence of uropathogenic Escherichia coli . PLoS One 2009; 4:e4752 [View Article][PubMed]
    [Google Scholar]
  51. Dunne KA, Chaudhuri RR, Rossiter AE, Beriotto I, Browning DF et al. Sequencing a piece of history: complete genome sequence of the original Escherichia coli strain. Microb Genom 2017; 3:mgen000106 [View Article][PubMed]
    [Google Scholar]
  52. Vanderlinde EM, Strozen TG, Hernández SB, Cava F, Howard SP. Alterations in peptidoglycan cross-linking suppress the secretin assembly defect caused by mutation of GspA in the type II secretion system. J Bacteriol 2017; 199:e00617-16 [View Article][PubMed]
    [Google Scholar]
  53. Juan C, Torrens G, Barceló IM, Oliver A. Interplay between peptidoglycan biology and virulence in Gram-negative pathogens. Microbiol Mol Biol Rev 2018; 82:e00033-18 [View Article][PubMed]
    [Google Scholar]
  54. Read TD, Massey RC. Characterizing the genetic basis of bacterial phenotypes using genome-wide association studies: a new direction for bacteriology. Genome Med 2014; 6:109 [View Article][PubMed]
    [Google Scholar]
  55. Chen PE, Shapiro BJ. The advent of genome-wide association studies for bacteria. Curr Opin Microbiol 2015; 25:17–24 [View Article][PubMed]
    [Google Scholar]
  56. Shapiro BJ, David LA, Friedman J, Alm EJ. Looking for Darwin's footprints in the microbial world. Trends Microbiol 2009; 17:196–204 [View Article][PubMed]
    [Google Scholar]
  57. Alam MT, Petit RA, Crispell EK, Thornton TA, Conneely KN et al. Dissecting vancomycin-intermediate resistance in Staphylococcus aureus using genome-wide association. Genome Biol Evol 2014; 6:1174–1185 [View Article][PubMed]
    [Google Scholar]
  58. Sahl JW, Allender CJ, Colman RE, Califf KJ, Schupp JM et al. Genomic characterization of Burkholderia pseudomallei isolates selected for medical countermeasures testing: comparative genomics associated with differential virulence. PLoS One 2015; 10:e0121052 [View Article][PubMed]
    [Google Scholar]
  59. Lee H, Popodi E, Tang H, Foster PL. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci USA 2012; 109:E2774–E2783 [View Article][PubMed]
    [Google Scholar]
  60. Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli . Nat Rev Microbiol 2010; 8:207–217 [View Article][PubMed]
    [Google Scholar]
  61. Escobar-Páramo P, Sabbagh A, Darlu P, Pradillon O, Vaury C et al. Decreasing the effects of horizontal gene transfer on bacterial phylogeny: the Escherichia coli case study. Mol Phylogenet Evol 2004; 30:243–250 [View Article][PubMed]
    [Google Scholar]
  62. Price LB, Johnson JR, Aziz M, Clabots C, Johnston B et al. The epidemic of extended-spectrum-β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. mBio 2013; 4:e00377-13 [View Article][PubMed]
    [Google Scholar]
  63. Hedge J, Wilson DJ. Bacterial phylogenetic reconstruction from whole genomes is robust to recombination but demographic inference is not. mBio 2014; 5:e02158 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000556
Loading
/content/journal/mgen/10.1099/mgen.0.000556
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error