1887

Abstract

Enterotoxigenic (ETEC) expressing the colonization pili CFA/I are common causes of diarrhoeal infections in humans. Here, we use a combination of transposon mutagenesis and transcriptomic analysis to identify genes and pathways that contribute to ETEC persistence in water environments and colonization of a mammalian host. ETEC persisting in water exhibit a distinct RNA expression profile from those growing in richer media. Multiple pathways were identified that contribute to water survival, including lipopolysaccharide biosynthesis and stress response regulons. The analysis also indicated that ETEC growing in mice encounter a bottleneck driving down the diversity of colonizing ETEC populations.

Funding
This study was supported by the:
  • BBSRC Institute Strategic Programme Microbes in the Food Chain (Award BB/R012504/1 and BBS/E/F/000PR10348)
    • Principle Award Recipient: RobertA. Kingsley
  • The Swedish Research Council
    • Principle Award Recipient: ÅsaSjoling
  • NIMR Cambridge BRC Antibiotic Resistance theme (Award ESPRC Vaccine-Hub grant)
    • Principle Award Recipient: GordonDougan
  • Marie Bashir Institute and Sydney Medical School Foundation (AU)
    • Principle Award Recipient: MoatazAbd El Ghany
  • Wellcome Trust
    • Principle Award Recipient: GordonDougan
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000554
2021-06-10
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/6/mgen000554.html?itemId=/content/journal/mgen/10.1099/mgen.0.000554&mimeType=html&fmt=ahah

References

  1. GBD 2013 Mortality and Causes of Death Collaborators Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet 2015; 385:117–171 [View Article][PubMed]
    [Google Scholar]
  2. Liu L, Johnson HL, Cousens S, Perin J, Scott S et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 2012; 379:2151–2161 [View Article][PubMed]
    [Google Scholar]
  3. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the global enteric multicenter study, GEMs): a prospective, case-control study. Lancet 2013; 382:209–222 [View Article][PubMed]
    [Google Scholar]
  4. Steffen R, Hill DR, DuPont HL. Traveler's diarrhea: a clinical review. JAMA 2015; 313:71–80 [View Article][PubMed]
    [Google Scholar]
  5. Joffre E, von Mentzer A, Abd El Ghany M, Oezguen N, Savidge T et al. Allele variants of enterotoxigenic Escherichia coli heat-labile toxin are globally transmitted and associated with colonization factors. J Bacteriol 2015; 197:392–403 [View Article][PubMed]
    [Google Scholar]
  6. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli . Nat Rev Microbiol 2004; 2:123–140 [View Article][PubMed]
    [Google Scholar]
  7. Isidean SD, Riddle MS, Savarino SJ, Porter CK. A systematic review of ETEC epidemiology focusing on colonization factor and toxin expression. Vaccine 2011; 29:6167–6178 [View Article][PubMed]
    [Google Scholar]
  8. Svennerholm AM, Lundgren A. Recent progress toward an enterotoxigenic Escherichia coli vaccine. Expert Rev Vaccines 2012; 11:495–507 [View Article][PubMed]
    [Google Scholar]
  9. Qadri F, Svennerholm AM, Faruque AS, Sack RB. Enterotoxigenic Escherichia coli in developing countries: epidemiology, microbiology, clinical features, treatment, and prevention. Clin Microbiol Rev 2005; 18:465–483 [View Article][PubMed]
    [Google Scholar]
  10. von Mentzer A, Tobias J, Wiklund G, Nordqvist S, Aslett M et al. Identification and characterization of the novel colonization factor CS30 based on whole genome sequencing in enterotoxigenic Escherichia coli (ETEC). Sci Rep 2017; 7:12514 [View Article][PubMed]
    [Google Scholar]
  11. von Mentzer A, Connor TR, Wieler LH, Semmler T, Iguchi A et al. Identification of enterotoxigenic Escherichia coli (ETEC) clades with long-term global distribution. Nat Genet 2014; 46:1321–1326 [View Article][PubMed]
    [Google Scholar]
  12. Anantha RP, McVeigh AL, Lee LH, Agnew MK, Cassels FJ et al. Evolutionary and functional relationships of colonization factor antigen i and other class 5 adhesive fimbriae of enterotoxigenic Escherichia coli . Infect Immun 2004; 72:7190–7201 [View Article][PubMed]
    [Google Scholar]
  13. Jansson L, Tobias J, Lebens M, Svennerholm AM, Teneberg S. The major subunit, CfaB, of colonization factor antigen i from enterotoxigenic Escherichia coli is a glycosphingolipid binding protein. Infect Immun 2006; 74:3488–3497 [View Article][PubMed]
    [Google Scholar]
  14. Mottram L, Liu J, Chavan S, Tobias J, Svennerholm AM et al. Glyco-engineered cell line and computational docking studies reveals enterotoxigenic Escherichia coli CFA/I fimbriae bind to Lewis a glycans. Sci Rep 2018; 8:11250 [View Article][PubMed]
    [Google Scholar]
  15. Mottram L, Wiklund G, Larson G, Qadri F, Svennerholm AM. FUT2 non-secretor status is associated with altered susceptibility to symptomatic enterotoxigenic Escherichia coli infection in Bangladeshis. Sci Rep 2017; 7:10649 [View Article][PubMed]
    [Google Scholar]
  16. Ahmed T, Lundgren A, Arifuzzaman M, Qadri F, Teneberg S et al. Children with the Le(a+b-) blood group have increased susceptibility to diarrhea caused by enterotoxigenic Escherichia coli expressing colonization factor I group fimbriae. Infect Immun 2009; 77:2059–2064 [View Article][PubMed]
    [Google Scholar]
  17. Li Y-F, Poole S, Rasulova F, McVeigh AL, Savarino SJ et al. A receptor-binding site as revealed by the crystal structure of CfaE, the colonization factor antigen I fimbrial adhesin of enterotoxigenic Escherichia coli . J Biol Chem 2007; 282:23970–23980 [View Article][PubMed]
    [Google Scholar]
  18. Poole ST, McVeigh AL, Anantha RP, Lee LH, Akay YM et al. Donor strand complementation governs intersubunit interaction of fimbriae of the alternate chaperone pathway. Mol Microbiol 2007; 63:1372–1384 [View Article][PubMed]
    [Google Scholar]
  19. Rodas C, Iniguez V, Qadri F, Wiklund G, Svennerholm AM et al. Development of multiplex PCR assays for detection of enterotoxigenic Escherichia coli colonization factors and toxins. J Clin Microbiol 2009; 47:1218–1220 [View Article][PubMed]
    [Google Scholar]
  20. Sjoling A, Wiklund G, Savarino SJ, Cohen DI, Svennerholm AM. Comparative analyses of phenotypic and genotypic methods for detection of enterotoxigenic Escherichia coli toxins and colonization factors. J Clin Microbiol 2007; 45:3295–3301 [View Article][PubMed]
    [Google Scholar]
  21. Viboud GI, Binsztein N, Svennerholm AM. Characterization of monoclonal antibodies against putative colonization factors of enterotoxigenic Escherichia coli and their use in an epidemiological study. J Clin Microbiol 1993; 31:558–564 [View Article][PubMed]
    [Google Scholar]
  22. Langridge GC, Phan MD, Turner DJ, Perkins TT, Parts L et al. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 2009; 19:2308–2316 [View Article][PubMed]
    [Google Scholar]
  23. Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ et al. The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics 2016; 32:1109–1111 [View Article][PubMed]
    [Google Scholar]
  24. Barquist L, Langridge GC, Turner DJ, Phan MD, Turner AK et al. A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium. Nucleic Acids Res 2013; 41:4549–4564 [View Article][PubMed]
    [Google Scholar]
  25. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26:139–140 [View Article][PubMed]
    [Google Scholar]
  26. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-Seq data. Genome Biol 2010; 11:R25 [View Article][PubMed]
    [Google Scholar]
  27. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010; 26:589–595 [View Article][PubMed]
    [Google Scholar]
  28. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 2008; 5:621–628 [View Article][PubMed]
    [Google Scholar]
  29. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011; 12:323 [View Article][PubMed]
    [Google Scholar]
  30. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010; 11:R106 [View Article][PubMed]
    [Google Scholar]
  31. Babicki S, Arndt D, Marcu A, Liang Y, Grant JR et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 2016; 44:W147–W153 [View Article][PubMed]
    [Google Scholar]
  32. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000; 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  33. Goodall ECA, Robinson A, Johnston IG, Jabbari S, Turner KA et al. The Essential Genome of Escherichia coli K-12. mBio 2018; 9:e02096–17 [View Article][PubMed]
    [Google Scholar]
  34. Phan MD, Peters KM, Sarkar S, Lukowski SW, Allsopp LP et al. The serum resistome of a globally disseminated multidrug resistant uropathogenic Escherichia coli clone. PLoS Genet 2013; 9:e1003834 [View Article][PubMed]
    [Google Scholar]
  35. Lange R, Hengge-Aronis R. Identification of a central regulator of stationary-phase gene expression in Escherichia coli . Mol Microbiol 1991; 5:49–59 [View Article][PubMed]
    [Google Scholar]
  36. Hengge-Aronis R, Fischer D. Identification and molecular analysis of glgS, a novel growth-phase-regulated and rpoS-dependent gene involved in glycogen synthesis in Escherichia coli . Mol Microbiol 1992; 6:1877–1886 [View Article][PubMed]
    [Google Scholar]
  37. Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R. Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 2005; 187:1591–1603 [View Article][PubMed]
    [Google Scholar]
  38. Lyzen R, Maitra A, Milewska K, Kochanowska-Lyzen M, Hernandez VJ et al. The dual role of DksA protein in the regulation of Escherichia coli pArgX promoter. Nucleic Acids Res 2016; 44:10316–10325 [View Article][PubMed]
    [Google Scholar]
  39. Parshin A, Shiver AL, Lee J, Ozerova M, Schneidman-Duhovny D et al. DksA regulates RNA polymerase in Escherichia coli through a network of interactions in the secondary channel that includes Sequence Insertion 1. Proc Natl Acad Sci U S A 2015; 112:E6862–E6871 [View Article][PubMed]
    [Google Scholar]
  40. Fukuoka H, Inoue Y, Ishijima A. Coordinated regulation of multiple flagellar motors by the Escherichia coli chemotaxis system. Biophysics 2012; 8:59–66 [View Article][PubMed]
    [Google Scholar]
  41. Berg HC. The flagellar motor adapts, optimizing bacterial behavior. Protein Sci 2017; 26:1249–1251 [View Article][PubMed]
    [Google Scholar]
  42. Shukla D, Zhu XY, Matsumura P. Flagellar motor-switch binding face of CheY and the biochemical basis of suppression by CheY mutants that compensate for motor-switch defects in Escherichia coli . J Biol Chem 1998; 273:23993–23999 [View Article][PubMed]
    [Google Scholar]
  43. Parkinson JS, Parker SR, Talbert PB, Houts SE. Interactions between chemotaxis genes and flagellar genes in Escherichia coli . J Bacteriol 1983; 155:265–274 [View Article][PubMed]
    [Google Scholar]
  44. Partridge JD, Nhu NTQ, Dufour YS, Harshey RM. Escherichia coli remodels the chemotaxis pathway for swarming. mBio 2019; 10:e00316–00319 [View Article][PubMed]
    [Google Scholar]
  45. Partridge JD, Nhu NTQ, Dufour YS, Harshey RM. Tumble suppression is a conserved feature of swarming motility. mBio 2020; 11:e01189–01120 [View Article][PubMed]
    [Google Scholar]
  46. Crossman LC, Chaudhuri RR, Beatson SA, Wells TJ, Desvaux M et al. A commensal gone bad: complete genome sequence of the prototypical enterotoxigenic Escherichia coli strain H10407. J Bacteriol 2010; 192:5822–5831 [View Article][PubMed]
    [Google Scholar]
  47. Madhavan TPV, Riches JD, Scanlon MJ, Ulett GC, Sakellaris H. Binding of CFA/I pili of enterotoxigenic Escherichia coli to asialo-GM1 is mediated by the minor pilin CfaE. Infect Immun 2016; 84:1642–1649 [View Article][PubMed]
    [Google Scholar]
  48. Luiz WB, Rodrigues JF, Crabb JH, Savarino SJ, Ferreira LC. Maternal vaccination with a fimbrial tip adhesin and passive protection of neonatal mice against lethal human enterotoxigenic Escherichia coli challenge. Infect Immun 2015; 83:4555–4564 [View Article][PubMed]
    [Google Scholar]
  49. Maigaard Hermansen GM, Boysen A, Krogh TJ, Nawrocki A, Jelsbak L et al. HldE Is important for virulence phenotypes in Enterotoxigenic Escherichia coli . Front Cell Infect Microbiol 2018; 8:253 [View Article][PubMed]
    [Google Scholar]
  50. Kingsley RA, Langridge G, Smith SE, Makendi C, Fookes M et al. Functional analysis of Salmonella Typhi adaptation to survival in water. Environ Microbiol 2018; 20:4079–4090 [View Article][PubMed]
    [Google Scholar]
  51. Cho BK, Kim D, Knight EM, Zengler K, Palsson BO. Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states. BMC Biol 2014; 12:4 [View Article][PubMed]
    [Google Scholar]
  52. Gruber TM, Gross CA. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 2003; 57:441–466 [View Article][PubMed]
    [Google Scholar]
  53. Maeda H, Fujita N, Ishihama A. Competition among seven Escherichia coli sigma subunits: relative binding affinities to the core RNA polymerase. Nucleic Acids Res 2000; 28:3497–3503 [View Article][PubMed]
    [Google Scholar]
  54. Turner AK, Lovell MA, Hulme SD, Zhang-Barber L, Barrow PA. Identification of Salmonella typhimurium genes required for colonization of the chicken alimentary tract and for virulence in newly hatched chicks. Infect Immun 1998; 66:2099–2106 [View Article][PubMed]
    [Google Scholar]
  55. Lothigius A, Sjoling A, Svennerholm AM, Bolin I. Survival and gene expression of enterotoxigenic Escherichia coli during long-term incubation in sea water and freshwater. J Appl Microbiol 2010; 108:1441–1449 [View Article][PubMed]
    [Google Scholar]
  56. Hernroth B, Lothigius A, Bolin I. Factors influencing survival of enterotoxigenic Escherichia coli, Salmonella enterica (serovar Typhimurium) and Vibrio parahaemolyticus in marine environments. FEMS Microbiol Ecol 2010; 71:272–280 [View Article][PubMed]
    [Google Scholar]
  57. Sharma UK, Chatterji D. Transcriptional switching in Escherichia coli during stress and starvation by modulation of sigma activity. FEMS Microbiol Rev 2010; 34:646–657 [View Article][PubMed]
    [Google Scholar]
  58. Savarino SJ, McKenzie R, Tribble DR, Porter CK, O'Dowd A et al. Prophylactic efficacy of hyperimmune bovine colostral antiadhesin antibodies against enterotoxigenic Escherichia coli diarrhea: a randomized, double-blind, placebo-controlled, phase 1 trial. J Infect Dis 2017; 216:7–13 [View Article][PubMed]
    [Google Scholar]
  59. Sincock SA, Hall ER, Woods CM, O'Dowd A, Poole ST et al. Immunogenicity of a prototype enterotoxigenic Escherichia coli adhesin vaccine in mice and nonhuman primates. Vaccine 2016; 34:284–291 [View Article][PubMed]
    [Google Scholar]
  60. Rollenhagen JE, Jones F, Hall E, Maves R, Nunez G et al. Establishment, validation and application of a New World Primate model of ETEC Escherichia coli Disease for vaccine development. Infect Immun 2019; 87:e00634–18 [View Article][PubMed]
    [Google Scholar]
  61. Nishi J, Sheikh J, Mizuguchi K, Luisi B, Burland V et al. The export of coat protein from enteroaggregative Escherichia coli by a specific ATP-binding cassette transporter system. J Biol Chem 2003; 278:45680–45689 [View Article][PubMed]
    [Google Scholar]
  62. Sheikh J, Czeczulin JR, Harrington S, Hicks S, Henderson IR et al. A novel dispersin protein in enteroaggregative Escherichia coli . J Clin Invest 2002; 110:1329–1337 [View Article][PubMed]
    [Google Scholar]
  63. Haines S, Gautheron S, Nasser W, Renauld-Mongenie G. Identification of novel components influencing colonization factor antigen I expression in enterotoxigenic Escherichia coli . PLoS One 2015; 10:e0141469 [View Article][PubMed]
    [Google Scholar]
  64. Luo Q, Qadri F, Kansal R, Rasko DA, Sheikh A et al. Conservation and immunogenicity of novel antigens in diverse isolates of enterotoxigenic Escherichia coli . PLoS Negl Trop Dis 2015; 9:e0003446 [View Article][PubMed]
    [Google Scholar]
  65. Patel SK, Dotson J, Allen KP, Fleckenstein JM. Identification and molecular characterization of EatA, an autotransporter protein of enterotoxigenic Escherichia coli . Infect Immun 2004; 72:1786–1794 [View Article][PubMed]
    [Google Scholar]
  66. Maldonado-Contreras A, Birtley JR, Boll E, Zhao Y, Mumy KL et al. Shigella depends on SepA to destabilize the intestinal epithelial integrity via cofilin activation. Gut Microbes 2017; 8:544–560 [View Article][PubMed]
    [Google Scholar]
  67. Crofts AA, Giovanetti SM, Rubin EJ, Poly FM, Gutierrez RL et al. Enterotoxigenic E. coli virulence gene regulation in human infections. Proc Natl Acad Sci U S A 2018; 115:E8968–E8976 [View Article][PubMed]
    [Google Scholar]
  68. Hazen TH, Michalski J, Luo Q, Shetty AC, Daugherty SC et al. Comparative genomics and transcriptomics of Escherichia coli isolates carrying virulence factors of both enteropathogenic and enterotoxigenic E. coli . Sci Rep 2017; 7:3513 [View Article][PubMed]
    [Google Scholar]
  69. Chakraborty S, Randall A, Vickers TJ, Molina D, Harro CD et al. Human experimental challenge with enterotoxigenic Escherichia coli elicits immune responses to canonical and novel antigens relevant to vaccine development. J Infect Dis 2018; 218:1436–1446 [View Article][PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000554
Loading
/content/journal/mgen/10.1099/mgen.0.000554
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

EXCEL

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error