1887

Abstract

Food-borne outbreak investigation currently relies on the time-consuming and challenging bacterial isolation from food, to be able to link food-derived strains to more easily obtained isolates from infected people. When no food isolate can be obtained, the source of the outbreak cannot be unambiguously determined. Shotgun metagenomics approaches applied to the food samples could circumvent this need for isolation from the suspected source, but require downstream strain-level data analysis to be able to accurately link to the human isolate. Until now, this approach has not yet been applied outside research settings to analyse real food-borne outbreak samples. In September 2019, a outbreak occurred in a hotel school in Bruges, Belgium, affecting over 200 students and teachers. Following standard procedures, the Belgian National Reference Center for human salmonellosis and the National Reference Laboratory for in food and feed used conventional analysis based on isolation, serotyping and MLVA (multilocus variable number tandem repeat analysis) comparison, followed by whole-genome sequencing, to confirm the source of the contamination over 2 weeks after receipt of the sample, which was freshly prepared tartar sauce in a meal cooked at the school. Our team used this outbreak as a case study to deliver a proof of concept for a short-read strain-level shotgun metagenomics approach for source tracking. We received two suspect food samples: the full meal and some freshly made tartar sauce served with this meal, requiring the use of raw eggs. After analysis, we could prove, without isolation, that was present in both samples, and we obtained an inferred genome of a subsp. serovar Enteritidis that could be linked back to the human isolates of the outbreak in a phylogenetic tree. These metagenomics-derived outbreak strains were separated from sporadic cases as well as from another outbreak circulating in Europe at the same time period. This is, to our knowledge, the first food-borne outbreak investigation uniquely linking the food source using a metagenomics approach and this in a fast time frame.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000547
2021-04-07
2021-04-15
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/4/mgen000547.html?itemId=/content/journal/mgen/10.1099/mgen.0.000547&mimeType=html&fmt=ahah

References

  1. ECDC, EFSA EFSA and ECDC technical report on the collection and analysis of whole genome sequencing data from food‐borne pathogens and other relevant microorganisms isolated from human, animal, food, feed and food/feed environmental samples in the joint ECDC‐EFSA molecular typing database. EFSA Support Publ [Internet]. 2019;16(5). Available from: http://doi.wiley.com/10.2903/sp.efsa.2019.EN-1337 .
  2. Naravaneni R, Jamil K. Rapid detection of food-borne pathogens by using molecular techniques. J Med Microbiol 2005; 54:51–54 [CrossRef][PubMed]
    [Google Scholar]
  3. European Union Commission regulation (EC) no 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off J Eur Union 2005:32
    [Google Scholar]
  4. EFSA ECDC The European Union one health 2018 zoonoses report. EFSA J 2019; 17:5926
    [Google Scholar]
  5. Sala C, Mordhorst H, Grützke J, Brinkmann A, Petersen TN et al. Metagenomics-based proficiency test of smoked salmon spiked with a mock community. Microorganisms 2020; 8:1861 [CrossRef][PubMed]
    [Google Scholar]
  6. European Commission Lessons Learned from the 2011 Outbreak of Shiga Toxin-Producing Escherichia coli (STEC) O104:H4 in Sprouted Seeds, Commission Staff Working Document ( https://ec.europa.eu/food/sites/food/files/safety/docs/biosafety-crisis-cswd_lessons_learned_en.pdf) Brussels: European Commission; 2011
    [Google Scholar]
  7. Kovac J, den Bakker H, Carroll LM, Wiedmann M. Precision food safety: a systems approach to food safety facilitated by genomics tools. Trends Analyt Chem 2017; 96:52–61 [CrossRef]
    [Google Scholar]
  8. Carleton HA, Besser J, Williams-Newkirk AJ, Huang A, Trees E et al. Metagenomic approaches for public health surveillance of foodborne infections: opportunities and challenges. Foodborne Pathog Dis 2019; 16:474–479 [CrossRef][PubMed]
    [Google Scholar]
  9. Höper D, Mettenleiter TC, Beer M. Metagenomic approaches to identifying infectious agents. Rev Sci Tech 2016; 35:83–93 [CrossRef][PubMed]
    [Google Scholar]
  10. Gardy JL, Loman NJ. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat Rev Genet 2018; 19:9–20 [CrossRef][PubMed]
    [Google Scholar]
  11. EFSA Panel on Biological Hazards (EFSA BIOHAZ Panel) Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D et al. Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J 2019; 17:e05898 [CrossRef][PubMed]
    [Google Scholar]
  12. Leonard SR, Mammel MK, Lacher DW, Elkins CA. Application of metagenomic sequencing to food safety: detection of Shiga toxin-producing Escherichia coli on fresh bagged spinach. Appl Environ Microbiol 2015; 81:8183–8191 [CrossRef][PubMed]
    [Google Scholar]
  13. Leonard SR, Mammel MK, Lacher DW, Elkins CA. Strain-level discrimination of Shiga toxin-producing Escherichia coli in spinach using metagenomic sequencing. PLoS One 2016; 11:e0167870 [CrossRef][PubMed]
    [Google Scholar]
  14. Walsh AM, Crispie F, Daari K, O'Sullivan O, Martin JC et al. Strain-level metagenomic analysis of the fermented dairy beverage nunu highlights potential food safety risks. Appl Environ Microbiol 2017; 83:e01144-17 [CrossRef][PubMed]
    [Google Scholar]
  15. Yang X, Noyes NR, Doster E, Martin JN, Linke LM et al. Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain. Appl Environ Microbiol 2016; 82:2433–2443 [CrossRef][PubMed]
    [Google Scholar]
  16. Saltykova A, Buytaers FE, Denayer S, Verhaegen B, Piérard D et al. Strain-level metagenomic data analysis of enriched in vitro and in silico spiked food samples: paving the way towards a culture-free foodborne outbreak investigation using STEC as a case study. Int J Mol Sci 2020; 21:5688 [CrossRef][PubMed]
    [Google Scholar]
  17. Buytaers FE, Saltykova A, Denayer S, Verhaegen B, Vanneste K et al. A practical method to implement strain-level metagenomics-based foodborne outbreak investigation and source tracking in routine. Microorganisms 2020; 8:1191 [CrossRef][PubMed]
    [Google Scholar]
  18. ISO ISO 6579-1:2017 Microbiology of the Food Chain – Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella – Part 1: Detection of Salmonella spp. Geneva: International Organization for Standardization; 2017
  19. EFSA Panel on Biological Hazards (BIOHAZ) Scientific opinion on the evaluation of molecular typing methods for major food-borne microbiological hazards and their use for attribution modelling, outbreak investigation and scanning surveillance: part 1 (evaluation of methods and applications). EFSA J 2013; 11:3502
    [Google Scholar]
  20. EFSA Use of Whole Genome Sequencing (WGS) of Food-borne Pathogens for Public Health Protection Luxembourg: EFSA; 2014
    [Google Scholar]
  21. Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST subcommittee. Clin Microbiol Infect 2017; 23:2–22 [CrossRef][PubMed]
    [Google Scholar]
  22. Tang S, Orsi RH, Luo H, Ge C, Zhang G et al. Assessment and comparison of molecular subtyping and characterization methods for Salmonella . Front Microbiol 2019; 10:1591 [CrossRef][PubMed]
    [Google Scholar]
  23. Franz E, Gras LM, Dallman T. Significance of whole genome sequencing for surveillance, source attribution and microbial risk assessment of foodborne pathogens. Curr Opin Food Sci 2016; 8:74–79 [CrossRef]
    [Google Scholar]
  24. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 2015; 12:733–735 [CrossRef][PubMed]
    [Google Scholar]
  25. Huang AD, Luo C, Pena-Gonzalez A, Weigand MR, Tarr CL et al. Metagenomics of two severe foodborne outbreaks provides diagnostic signatures and signs of coinfection not attainable by traditional methods. Appl Environ Microbiol 2017; 83:e02577-16 [CrossRef][PubMed]
    [Google Scholar]
  26. Hyeon J-Y, Li S, Mann DA, Zhang S, Li Z et al. Quasimetagenomics-based and real-time sequencing-aided detection and subtyping of Salmonella enterica from food samples. Appl Environ Microbiol 2018; 84:e02340-17 [CrossRef][PubMed]
    [Google Scholar]
  27. Sciensano Voedselvergiftigingen in Belgie Jaaroverzicht 2019 ( https://www.sciensano.be/sites/default/files/jaarverslagboekje_vti2019_nl2020.pdf) Brussels: Sciensano; 2020
    [Google Scholar]
  28. Sciensano Centre National de Référence Salmonella & Shigella Rapport Annuel 2019 ( https://nrchm.wiv-isp.be/fr/centres_ref_labo/salmonella_et_shigella_spp/Rapports/Salmonella+Shigella 2019.pdf) Brussels: Sciensano; 2020
    [Google Scholar]
  29. AFSCA Communiqué de presse de l’Agence Régionale “Zorg en Gezondheid” et de l’Agence Fédérale pour la Sécurité de la Chaîne Alimentaire: résultats de l’enquête sur le foyer de salmonelles l’école hôtelière Spermalie Bruges. Brussels: AFSCA; 2019 http://www.afsca.be/professionnels/publications/presse/2019/2019-09-23b.asp
  30. Pijnacker R, Dallman TJ, Tijsma ASL, Hawkins G, Larkin L et al. An international outbreak of Salmonella enterica serotype Enteritidis linked to eggs from Poland: a microbiological and epidemiological study. Lancet Infect Dis 2019; 19:778–786 [CrossRef][PubMed]
    [Google Scholar]
  31. ECDC EFSA Joint ECDC-EFSA Rapid Outbreak Assessment: Multi-Country Outbreak of Salmonella enteritidis Infections Linked to Eggs, fourth update Solna, Parma: ECDC, EFSA; 2020
    [Google Scholar]
  32. Barbau-Piednoir E, Bertrand S, Mahillon J, Roosens NH, Botteldoorn N. SYBR®Green qPCR Salmonella detection system allowing discrimination at the genus, species and subspecies levels. Appl Microbiol Biotechnol 2013; 97:9811–9824 [CrossRef][PubMed]
    [Google Scholar]
  33. Andrews S FastQC: a quality control tool for high throughput sequence data 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  34. EFSA Panel on Biological Hazards (BIOHAZ) Scientific opinion on the evaluation of molecular typing methods for major food-borne microbiological hazards and their use for attribution modelling, outbreak investigation and scanning surveillance: part 2 (surveillance and data management activities). EFSA J 2014; 12:3784 [CrossRef]
    [Google Scholar]
  35. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20:257 [CrossRef][PubMed]
    [Google Scholar]
  36. Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O. PathogenFinder – distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 2013; 8:e77302 [CrossRef][PubMed]
    [Google Scholar]
  37. Marcelino VR, Clausen PTLC, Buchmann JP, Wille M, Iredell JR et al. CCMetagen: comprehensive and accurate identification of eukaryotes and prokaryotes in metagenomic data. Genome Biol 2020; 21:103 [CrossRef][PubMed]
    [Google Scholar]
  38. Ahn TH, Chai J, Pan C. Sigma: strain-level inference of genomes from metagenomic analysis for biosurveillance. Bioinformatics 2015; 31:170–177 [CrossRef][PubMed]
    [Google Scholar]
  39. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  40. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [CrossRef][PubMed]
    [Google Scholar]
  41. Yoshida CE, Kruczkiewicz P, Laing CR, Lingohr EJ, Gannon VPJ et al. The Salmonella in silico typing resource (SISTR): an open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS One 2016; 11:e0147101 [CrossRef][PubMed]
    [Google Scholar]
  42. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [CrossRef][PubMed]
    [Google Scholar]
  43. Bogaerts B, Winand R, Fu Q, Van Braekel J, Ceyssens PJ et al. Validation of a bioinformatics workflow for routine analysis of whole-genome sequencing data and related challenges for pathogen typing in a European national reference center: Neisseria meningitidis as a proof-of-concept. Front Microbiol 2019; 10:362 [CrossRef][PubMed]
    [Google Scholar]
  44. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. mega X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  45. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [CrossRef][PubMed]
    [Google Scholar]
  46. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [CrossRef][PubMed]
    [Google Scholar]
  47. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013; 57:3348–3357 [CrossRef]
    [Google Scholar]
  48. Jain S, Mukhopadhyay K, Thomassin PJ. An economic analysis of Salmonella detection in fresh produce, poultry, and eggs using whole genome sequencing technology in Canada. Food Res Int 2019; 116:802–809 [CrossRef][PubMed]
    [Google Scholar]
  49. Loman NJ, Constantinidou C, Christner M, Rohde H, Chan JZ-M et al. A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA 2013; 309:1502–1510 [CrossRef][PubMed]
    [Google Scholar]
  50. Quick J, Ashton P, Calus S, Chatt C, Gossain S et al. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella . Genome Biol 2015; 16:114 [CrossRef][PubMed]
    [Google Scholar]
  51. ISO ISO/DIS 23418 Microbiology of the Food Chain – Whole Genome Sequencing for Typing and Genomic Characterization of Foodborne Bacteria – General Requirements and Guidance. Geneva: International Organization for Standardization; 2021
  52. Marcelino VR, Holmes EC, Sorrell TC. The use of taxon-specific reference databases compromises metagenomic classification. BMC Genomics 2020; 21:184 [CrossRef][PubMed]
    [Google Scholar]
  53. Seeman T snippy: fast bacterial variant calling from NGS reads 2015 https://github.com/tseemann/snippy
  54. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [CrossRef][PubMed]
    [Google Scholar]
  55. Juul S, Izquierdo F, Hurst A, Dai X, Wright A. What’s in my pot? Real-time species identification on the MinION. bioRxiv 2015030742
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000547
Loading
/content/journal/mgen/10.1099/mgen.0.000547
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error