1887

Abstract

The essential genome of a bacterium encompasses core genes associated with basic cellular processes and conditionally essential genes dependent upon environmental conditions or the genetic context. Comprehensive knowledge of those gene sets allows for a better understanding of fundamental bacterial biology and offers new perspectives for antimicrobial drug research against detrimental bacteria such as pathogens. We investigated the essential genome of pv. , a gammaproteobacterial plant pathogen of lettuce ( L.) which belongs to the plant-pathogen reservoir genus and is affiliated to the family . No practical means of disease control or prevention against this pathogen is currently available, and its molecular biology is virtually unknown. To reach a comprehensive overview of the essential genome of pv. LM16734, we developed a mixed approach combining high-quality full genome sequencing, saturated transposon insertion sequencing (Tn-Seq) in optimal growth conditions, and coupled computational analyses such as comparative genomics, synteny assessment and phylogenomics. Among the 370 essential loci identified by Tn-Seq, a majority was bound to critical cell processes conserved across bacteria. The remaining genes were either related to specific ecological features of or species, or acquired through horizontal gene transfer of mobile genetic elements and associated with ancestral parasitic gene behaviour and bacterial defence systems. Our study sheds new light on our usual concepts about gene essentiality and is pioneering in the molecular and genomic study of pv. .

Funding
This study was supported by the:
  • Fonds européen agricole pour le développement rural (FEADER)
    • Principle Award Recipient: FranckBertolla
  • Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation
    • Principle Award Recipient: LucasMorinière
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000546
2021-03-24
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/6/mgen000546.html?itemId=/content/journal/mgen/10.1099/mgen.0.000546&mimeType=html&fmt=ahah

References

  1. Mira A, Ochman H, Moran NA. Deletional bias and the evolution of bacterial genomes. Trends Genet 2001; 17:589–596
    [Google Scholar]
  2. Hacker J, Carniel E. Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Rep 2001; 2:376–381
    [Google Scholar]
  3. Juhas M, Eberl L, Glass JI. Essence of life: essential genes of minimal genomes. Trends Cell Biol 2011; 21:562–568
    [Google Scholar]
  4. Koonin EV. How many genes can make a cell: the minimal-gene-set concept. Annu Rev Genomics Hum Genet 2000; 1:99–116
    [Google Scholar]
  5. Christen B, Abeliuk E, Collier JM, Kalogeraki VS, Passarelli B et al. The essential genome of a bacterium. Mol Syst Biol 2011; 7:528
    [Google Scholar]
  6. D’Elia MA, Pereira MP, Brown ED. Are essential genes really essential?. Trends Microbiol 2009; 17:433–438
    [Google Scholar]
  7. Rancati G, Moffat J, Typas A, Pavelka N. Emerging and evolving concepts in gene essentiality. Nat Rev Genet 2018; 19:34–49
    [Google Scholar]
  8. Gislason AS, Turner K, Domaratzki M, Cardona ST. Comparative analysis of the Burkholderia cenocepacia K56-2 essential genome reveals cell envelope functions that are uniquely required for survival in species of the genus Burkholderia. Microb Genomics 2017; 3:
    [Google Scholar]
  9. Poulsen BE, Yang R, Clatworthy AE, White T, Osmulski SJ et al. Defining the core essential genome of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2019; 116:10072–10080 [View Article] [PubMed]
    [Google Scholar]
  10. Le Breton Y, Belew AT, Valdes KM, Islam E, Curry P et al. Essential genes in the core genome of the human pathogen Streptococcus pyogenes. Sci Rep 2015; 5:9838
    [Google Scholar]
  11. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK et al. Essential Bacillus subtilis genes. Proc Natl Acad Sci 2003; 100:4678–4683
    [Google Scholar]
  12. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006; 2:2006.0008
    [Google Scholar]
  13. Mushegian AR, Koonin EV. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci 1996; 93:10268–10273
    [Google Scholar]
  14. Gil R, Silva FJ, Peretó J, Moya A. Determination of the core of a minimal bacterial gene set. Microbiol Mol Biol Rev 2004; 68:518–537
    [Google Scholar]
  15. Koonin EV. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 2003; 1:127–136
    [Google Scholar]
  16. van Opijnen T, Bodi KL, Tn-seq CA. High-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 2009; 6:767–772
    [Google Scholar]
  17. Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 2009; 6:279–289
    [Google Scholar]
  18. Langridge GC, Phan M-D, Turner DJ, Perkins TT, Parts L et al. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 2009; 19:2308–2316
    [Google Scholar]
  19. Gawronski JD, Wong SMS, Giannoukos G, Ward DV, Akerley BJ. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci 2009; 106:16422–16427
    [Google Scholar]
  20. Goodall ECA, Robinson A, Johnston IG, Jabbari S, Turner KA et al. The essential genome of Escherichia coli K-12. MBio 2018; 9:e02096–17
    [Google Scholar]
  21. Higgins S, Sanchez-Contreras M, Gualdi S, Pinto-Carbó M, Carlier A et al. The essential genome of Burkholderia cenocepacia H111. J Bacteriol 2017; 199:e00260–17
    [Google Scholar]
  22. Hooven TA, Catomeris AJ, Akabas LH, Randis TM, Maskell DJ et al. The essential genome of Streptococcus agalactiae. BMC Genomics 2016; 17:406
    [Google Scholar]
  23. Mandal RK, Jiang T, Kwon YM. Essential genome of Campylobacter jejuni. BMC Genomics 2017; 18:616
    [Google Scholar]
  24. Rosconi F, de Vries SPW, Baig A, Fabiano E, Grant AJ. essential genes for in vitro growth of the endophyte Herbaspirillum seropedicae SmR1 as revealed by transposon insertion site sequencing. Appl Environ Microbiol 2016; 82:6664–6671
    [Google Scholar]
  25. Rubin BE, Wetmore KM, Price MN, Diamond S, Shultzaberger RK et al. The essential gene set of a photosynthetic organism. Proc Natl Acad Sci 2015; 112:E6634–6643
    [Google Scholar]
  26. Wong Y-C, Abd El Ghany M, Naeem R, Lee K-W, Tan Y-C et al. Candidate essential genes in Burkholderia cenocepacia J2315 identified by genome-wide TraDIS. Front Microbiol 2016; 7:
    [Google Scholar]
  27. Royet K, Parisot N, Rodrigue A, Gueguen E, Condemine G. Identification by Tn-seq of Dickeya dadantii genes required for survival in chicory plants. Mol Plant Pathol 2019; 20:287–306
    [Google Scholar]
  28. Bishop AH, Rachwal PA, Vaid A. Identification of genes required by Bacillus thuringiensis for survival in soil by transposon-directed insertion site sequencing. Curr Microbiol 2014; 68:477–485
    [Google Scholar]
  29. Cole BJ, Feltcher ME, Waters RJ, Wetmore KM, Mucyn TS et al. Genome-wide identification of bacterial plant colonization genes. PLOS Biol 2017; 15:e2002860
    [Google Scholar]
  30. Khatiwara A, Jiang T, Sung S-S, Dawoud T, Kim JN et al. Genome scanning for conditionally essential genes in Salmonella enterica serotype Typhimurium. Appl Environ Microbiol 2012; 78:3098–3107
    [Google Scholar]
  31. LaSarre B, Deutschbauer AM, Love CE, McKinlay JB. Covert cross-feeding revealed by genome-wide analysis of fitness determinants in a synthetic bacterial mutualism. Appl Environ Microbiol 2020; 86:
    [Google Scholar]
  32. Skurnik D, Roux D, Aschard H, Cattoir V, Yoder-Himes D et al. A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries. PLoS Pathog 2013; 9:
    [Google Scholar]
  33. Luo H, Lin Y, Gao F, Zhang C-T, DEG ZR. 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res 2014; 42:D574–580
    [Google Scholar]
  34. Mobegi FM, van Hijum SA, Burghout P, Bootsma HJ, de Vries SP et al. From microbial gene essentiality to novel antimicrobial drug targets. BMC Genomics 2014; 15:958
    [Google Scholar]
  35. Curtis PD, Brun YV. Identification of essential alphaproteobacterial genes reveals operational variability in conserved developmental and cell cycle systems. Mol Microbiol 2014; 93:713–735
    [Google Scholar]
  36. Su Y, Xu Y, Li Q, Yuan G, Zheng D. The essential genome of Ralstonia solanacearum. Microbiol Res 2020; 238:126500
    [Google Scholar]
  37. S-Q A, Potnis N, Dow M, Vorhölter F-J, Y-Q H et al. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev 2020; 44:1–32
    [Google Scholar]
  38. Ryan RP, Vorhölter F-J, Potnis N, Jones JB, Van Sluys M-A et al. Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nat Rev Microbiol 2011; 9:344–355
    [Google Scholar]
  39. Morinière L, Burlet A, Rosenthal ER, Nesme X, Portier P et al. Clarifying the taxonomy of the causal agent of bacterial leaf spot of lettuce through a polyphasic approach leads to combine Xanthomonas hortorum Vauterin, et al. 1995 and Xanthomonas cynarae Trébaol 2000 emend. Timilsina, et al. 2019. Syst Appl Microbiol 2020:126087
    [Google Scholar]
  40. Schornack S, Minsavage GV, Stall RE, Jones JB, Lahaye T. Characterization of AvrHah1, a novel AvrBs3-like effector from Xanthomonas gardneri with virulence and avirulence activity. New Phytol 2008; 179:546–556
    [Google Scholar]
  41. Potnis N, Minsavage G, Smith JK, Hurlbert JC, Norman D et al. Avirulence proteins AvrBs7 from Xanthomonas gardneri and AvrBs1.1 from Xanthomonas euvesicatoria contribute to a novel gene-for-gene interaction in pepper. Mol Plant-Microbe Interactions® 2011; 25:307–320
    [Google Scholar]
  42. Kimbrel JA, Givan SA, Temple TN, Johnson KB, Chang JH. Genome sequencing and comparative analysis of the carrot bacterial blight pathogen, Xanthomonas hortorum pv. carotae M081, for insights into pathogenicity and applications in molecular diagnostics. Mol Plant Pathol 2011; 12:580–594
    [Google Scholar]
  43. Bull CT, Koike ST. Evaluating the efficacy of commercial products for management of bacterial leaf spot on lettuce. Plant Health Prog 2005
    [Google Scholar]
  44. Bull CT. Genetic diversity of lettuce for resistance to bacterial leaf spot caused by Xanthomonas campestris pv. vitians. Plant Health Prog 2007
    [Google Scholar]
  45. Koike ST, Gilbertson RL. Chapter 25: Detection of Xanthomonas campestris pv. vitians in lettuce seeds. Detect. Plant-Pathog. Bact. Seed Plant. Mater, 2nd ed. The American Phytopathological Society; 2017 pp 173–178
    [Google Scholar]
  46. Fayette J, Jones JB, Pernezny K, Roberts PD, Raid R. Survival of Xanthomonas campestris pv. vitians on lettuce in crop debris, irrigation water, and weeds in south Florida. Eur J Plant Pathol 2017
    [Google Scholar]
  47. Toussaint V, Benoit DL, Carisse O. Potential of weed species to serve as a reservoir for Xanthomonas campestris pv. vitians, the causal agent of bacterial leaf spot of lettuce. Crop Prot 2012; 41:64–70
    [Google Scholar]
  48. Bull CT, Koike ST. Practical benefits of knowing the enemy: modern molecular tools for diagnosing the etiology of bacterial diseases and understanding the taxonomy and diversity of plant-pathogenic bacteria. Annu Rev Phytopathol 2015; 53:157–180
    [Google Scholar]
  49. Sandoya GV, Maisonneuve B, Truco MJ, Bull CT, Simko I et al. Genetic analysis of resistance to bacterial leaf spot in the Heirloom lettuce cultivar Reine des Glaces. Mol Breed 2019; 39:160
    [Google Scholar]
  50. Sambrook J, Russell DW. The Condensed Protocols from Molecular Cloning: a Laboratory Manual CSHL Press; 2006
    [Google Scholar]
  51. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol 2017; 13:e1005595
    [Google Scholar]
  52. Vallenet D, Calteau A, Dubois M, Amours P, Bazin A et al. Microscope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis. Nucleic Acids Res 2020; 48:D579–589
    [Google Scholar]
  53. Luo H, Gao F. DoriC 10.0: an updated database of replication origins in prokaryotic genomes including chromosomes and plasmids. Nucleic Acids Res 2019; 47:D74–77
    [Google Scholar]
  54. Yen M-R, Lin N-T, Hung C-H, Choy K-T, Weng S-F et al. oriC region and replication termination site, dif, of the Xanthomonas campestris pv. campestris 17 chromosome. Appl Environ Microbiol 2002; 68:2924–2933
    [Google Scholar]
  55. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetJournal 2011; 17:10–12
    [Google Scholar]
  56. DeJesus MA, Ambadipudi C, Baker R, Sassetti C, Ioerger TR. TRANSIT - A software tool for Himar1 TnSeq analysis. PLOS Comput Biol 2015; 11:e1004401
    [Google Scholar]
  57. DeJesus MA, Ioerger TR. A hidden Markov model for identifying essential and growth-defect regions in bacterial genomes from transposon insertion sequencing data. BMC Bioinformatics 2013; 14:303
    [Google Scholar]
  58. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421
    [Google Scholar]
  59. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 2009; 25:119–120
    [Google Scholar]
  60. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–269
    [Google Scholar]
  61. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731
    [Google Scholar]
  62. Kanehisa M, Sato Y. Kegg Mapper for inferring cellular functions from protein sequences. Protein Sci 2020; 29:28–35
    [Google Scholar]
  63. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4:2304
    [Google Scholar]
  64. Edgar RC. Search and clustering orders of magnitude faster than blast. Bioinformatics 2010; 26:2460–2461
    [Google Scholar]
  65. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797
    [Google Scholar]
  66. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLOS ONE 2010; 5:e9490
    [Google Scholar]
  67. Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999; 16:1114–1116
    [Google Scholar]
  68. Yu G, Smith DK, Zhu H, Guan Y, TT-Y L. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36
    [Google Scholar]
  69. DeJesus MA, Nambi S, Smith CM, Baker RE, Sassetti CM et al. Statistical analysis of genetic interactions in Tn-Seq data. Nucleic Acids Res 2017; 45:e93
    [Google Scholar]
  70. Zomer A, Burghout P, Bootsma HJ, Hermans PWM, van Hijum S. Essentials: software for rapid analysis of high throughput transposon insertion sequencing data. PloS One 2012; 7:e43012
    [Google Scholar]
  71. Solaimanpour S, Sarmiento F, Mrázek J. Tn-seq explorer: a tool for analysis of high-throughput sequencing data of transposon mutant libraries. PLoS One 2015; 10:e0126070 [View Article] [PubMed]
    [Google Scholar]
  72. Zhang YJ, Ioerger TR, Huttenhower C, Long JE, Sassetti CM et al. Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLOS Pathog 2012; 8:e1002946
    [Google Scholar]
  73. Shields RC, Zeng L, Culp DJ, Burne RA. Genomewide identification of essential genes and fitness determinants of Streptococcus mutans UA159. mSphere 2018; 3: 07 02 2018 [View Article] [PubMed]
    [Google Scholar]
  74. Yuan Z, Wang L, Sun S, Wu Y, Qian W. Genetic and proteomic analyses of a Xanthomonas campestris pv. campestris purC mutant deficient in purine biosynthesis and virulence. J Genet Genomics 2013; 40:473–487
    [Google Scholar]
  75. Chandran V, Luisi BF. Recognition of enolase in the Escherichia coli RNA degradosome. J Mol Biol 2006; 358:8–15
    [Google Scholar]
  76. Vorhölter F-J, Schneiker S, Goesmann A, Krause L, Bekel T et al. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol 2008; 134:33–45
    [Google Scholar]
  77. Schatschneider S, Huber C, Neuweger H, Watt TF, Pühler A et al. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner–Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. Mol Biosyst 2014; 10:2663–2676
    [Google Scholar]
  78. Ito M, Guffanti AA, Wang W, Krulwich TA. Effects of nonpolar mutations in each of the seven Bacillus subtilis mrp genes suggest complex interactions among the gene products in support of Na+ and alkali but not cholate resistance. J Bacteriol 2000; 182:5663–5670
    [Google Scholar]
  79. Ito M, Morino M, Krulwich TA. Mrp antiporters have important roles in diverse bacteria and archaea. Front Microbiol 2017; 8:2325 [View Article] [PubMed]
    [Google Scholar]
  80. de Berardinis V, Vallenet D, Castelli V, Besnard M, Pinet A et al. A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol 2008; 4:174 [View Article] [PubMed]
    [Google Scholar]
  81. Gerlin L, Cottret L, Cesbron S, Taghouti G, Jacques M-A et al. Genome-scale investigation of the metabolic determinants generating bacterial fastidious growth. MSystems 2020; 5:e00698–19
    [Google Scholar]
  82. Pieretti I, Pesic A, Petras D, Royer M, Süssmuth RD et al. What makes Xanthomonas albilineans unique amongst xanthomonads?. Front Plant Sci 2015; 6:
    [Google Scholar]
  83. Palleroni NJ, Bradbury JF. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings, et al. 1983. Int J Syst Evol Microbiol 1993; 43:606–609
    [Google Scholar]
  84. da Silva FR, Vettore AL, Kemper EL, Leite A, Arruda P. Fastidian gum: the Xylella fastidiosa exopolysaccharide possibly involved in bacterial pathogenicity. FEMS Microbiol Lett 2001; 203:165–171
    [Google Scholar]
  85. Lu H, Patil P, Van Sluys M-A, White FF, Ryan RP et al. Acquisition and evolution of plant pathogenesis–associated gene clusters and candidate determinants of tissue-specificity in Xanthomonas. PLoS ONE 2008; 3:e3828
    [Google Scholar]
  86. Katzen F, Ferreiro DU, Oddo CG, Ielmini MV, Becker A et al. Xanthomonas campestris pv. campestris gum mutants: Effects on xanthan biosynthesis and plant virulence. J Bacteriol 1998; 180:1607–1617
    [Google Scholar]
  87. Kim S-Y, Kim J-G, Lee B-M, Cho J-Y. Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae. Biotechnol Lett 2008; 31:265
    [Google Scholar]
  88. Alkhateeb RS, Vorhölter F-J, Rückert C, Mentz A, Wibberg D et al. Genome wide transcription start sites analysis of Xanthomonas campestris pv. campestris B100 with insights into the gum gene cluster directing the biosynthesis of the exopolysaccharide xanthan. J Biotechnol 2016; 225:18–28
    [Google Scholar]
  89. Yoon K-H, Cho J-Y. Transcriptional analysis of the gum gene cluster from Xanthomonas oryzae pathovar oryzae. Biotechnol Lett 2007; 29:95–103
    [Google Scholar]
  90. Katzen F, Becker A, Zorreguieta A, Pühler A, Ielpi L. Promoter analysis of the Xanthomonas campestris pv. campestris gum operon directing biosynthesis of the xanthan polysaccharide. J Bacteriol 1996; 178:4313–4318
    [Google Scholar]
  91. Galván EM, Ielmini MV, Patel YN, Bianco MI, Franceschini EA et al. Xanthan chain length is modulated by increasing the availability of the polysaccharide copolymerase protein GumC and the outer membrane polysaccharide export protein GumB. Glycobiology 2013; 23:259–272
    [Google Scholar]
  92. Xayarath B, Yother J. Mutations blocking side chain assembly, polymerization, or transport of a Wzy-dependent Streptococcus pneumoniae capsule are lethal in the absence of suppressor mutations and can affect polymer transfer to the cell wall. J Bacteriol 2007; 189:3369–3381
    [Google Scholar]
  93. Salinas SR, Bianco MI, Barreras M, Ielpi L. Expression, purification and biochemical characterization of GumI, a monotopic membrane GDP-mannose:glycolipid 4-β-D-mannosyltransferase from Xanthomonas campestris pv. campestris. Glycobiology 2011; 21:903–913
    [Google Scholar]
  94. Niknezhad SV, Asadollahi MA, Zamani A, Biria D. Production of xanthan gum by free and immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii. Int J Biol Macromol 2016; 82:751–756
    [Google Scholar]
  95. Schiltz CJ, Adams MC, Chappie JS. The full-length structure of Thermus scotoductus OLD defines the ATP hydrolysis properties and catalytic mechanism of Class 1 OLD family nucleases. Nucleic Acids Res 2020; 48:2762–2776
    [Google Scholar]
  96. Myung H, Calendar R. The old exonuclease of bacteriophage P2. J Bacteriol 1995; 177:497–501
    [Google Scholar]
  97. Schiltz CJ, Lee A, Partlow EA, Hosford CJ, Chappie JS. Structural characterization of class 2 old family nucleases supports a two-metal catalysis mechanism for cleavage. Nucleic Acids Res 2019; 47:9448–9463
    [Google Scholar]
  98. Ranjani P, Gowthami Y, Gnanamanickam S, Palani P. Bacteriophages: A new weapon for the control of bacterial blight disease in rice caused by Xanthomonas oryzae. Microbiol Biotechnol Lett 2018; 46:346–359
    [Google Scholar]
  99. Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013; 77:53–72
    [Google Scholar]
  100. Takeuchi K, Noda N, Someya N. Complete genome sequence of the biocontrol strain Pseudomonas protegens Cab57 discovered in Japan reveals strain-specific diversity of this species. PLoS ONE 2014; 9:
    [Google Scholar]
  101. Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE — A database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 2015; 43:D298–D299 [View Article]
    [Google Scholar]
  102. Mruk I, Kobayashi I. To be or not to be: regulation of restriction–modification systems and other toxin–antitoxin systems. Nucleic Acids Res 2014; 42:70–86 [View Article]
    [Google Scholar]
  103. Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG. Type I restriction enzymes and their relatives. Nucleic Acids Res 2014; 42:20–44 [View Article] [PubMed]
    [Google Scholar]
  104. Raleigh EA. Organization and function of the mcrBC genes of Escherichia coli K-12. Mol Microbiol 1992; 6:1079–1086 [View Article] [PubMed]
    [Google Scholar]
  105. Kobayashi I. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 2001; 29:3742–3756 [View Article] [PubMed]
    [Google Scholar]
  106. Mochizuki A, Yahara K, Kobayashi I, Iwasa Y. Genetic addiction: selfish gene's strategy for symbiosis in the genome. Genetics 2006; 172:1309–1323 [View Article] [PubMed]
    [Google Scholar]
  107. Furuta Y, Abe K, Kobayashi I. Genome comparison and context analysis reveals putative mobile forms of restriction-modification systems and related rearrangements. Nucleic Acids Res 2010; 38:2428–2443 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000546
Loading
/content/journal/mgen/10.1099/mgen.0.000546
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error