1887

Abstract

Compared to short-read sequencing data, long-read sequencing facilitates single contiguous assemblies and characterization of the prophage region of the genome. Here, we describe our methodological approach to using Oxford Nanopore Technology (ONT) sequencing data to quantify genetic relatedness and to look for microevolutionary events in the core and accessory genomes to assess the within-outbreak variation of four genetically and epidemiologically linked isolates. Analysis of both Illumina and ONT sequencing data detected one SNP between the four sequences of the outbreak isolates. The variant calling procedure highlighted the importance of masking homologous sequences in the reference genome regardless of the sequencing technology used. Variant calling also highlighted the systemic errors in ONT base-calling and ambiguous mapping of Illumina reads that results in variations in the genetic distance when comparing one technology to the other. The prophage component of the outbreak strain was analysed, and nine of the 16 prophages showed some similarity to the prophage in the Sakai reference genome, including the -encoding phage. Prophage comparison between the outbreak isolates identified minor genome rearrangements in one of the isolates, including an inversion and a deletion event. The ability to characterize the accessory genome in this way is the first step to understanding the significance of these microevolutionary events and their impact on the evolutionary history, virulence and potentially the likely source and transmission of this zoonotic, foodborne pathogen.

Funding
This study was supported by the:
  • National Institute for Health Research (Award 111815)
    • Principle Award Recipient: DavidR Greig
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000545
2021-03-08
2022-01-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/3/mgen000545.html?itemId=/content/journal/mgen/10.1099/mgen.0.000545&mimeType=html&fmt=ahah

References

  1. Launders N, Byrne L, Jenkins C, Harker K, Charlett A et al. Disease severity of Shiga toxin-producing E. coli O157 and factors influencing the development of typical haemolytic uraemic syndrome: a retrospective cohort study, 2009-2012. BMJ Open 2016; 6:e009933 [View Article][PubMed]
    [Google Scholar]
  2. Eppinger M, Mammel MK, Leclerc JE, Ravel J, Cebula TA. Genomic anatomy of Escherichia coli O157:H7 outbreaks. Proc Natl Acad Sci U S A 2011; 108:20142–20147 [View Article][PubMed]
    [Google Scholar]
  3. Ogura Y, Mondal SI, Islam MR, Mako T, Arisawa K et al. The Shiga toxin 2 production level in enterohemorrhagic Escherichia coli O157:H7 is correlated with the subtypes of toxin-encoding phage. Sci Rep 2015; 5:16663 [View Article][PubMed]
    [Google Scholar]
  4. Byrne L, Adams N, Jenkins C. Association between Shiga Toxin-Producing Escherichia coli O157:H7 stx gene subtype and disease severity, England, 2009-2019. Emerg Infect Dis 2020; 26:2394–2400 [View Article][PubMed]
    [Google Scholar]
  5. Latif H, Li HJ, Charusanti P, Palsson Bernhard Ø, Aziz RK. A Gapless, Unambiguous genome sequence of the enterohemorrhagic Escherichia coli O157:H7 Strain EDL933. Genome Announc 2014; 2:pii: e00821–14 [View Article][PubMed]
    [Google Scholar]
  6. Asadulghani M, Ogura Y, Ooka T, Itoh T, Sawaguchi A et al. The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 2009; 5:e1000408 [View Article][PubMed]
    [Google Scholar]
  7. Dallman TJ, Ashton PM, Byrne L, Perry NT, Petrovska L et al. Applying phylogenomics to understand the emergence of Shiga-toxin-producing Escherichia coli O157:H7 strains causing severe human disease in the UK. Microb Genom 2015; 1:e000029 [View Article][PubMed]
    [Google Scholar]
  8. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  9. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010; 26:589–595 [View Article][PubMed]
    [Google Scholar]
  10. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K et al. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 2001; 8:11–22 [View Article][PubMed]
    [Google Scholar]
  11. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20:1297–1303 [View Article][PubMed]
    [Google Scholar]
  12. Dallman T, Ashton P, Schafer U, Jironkin A, Painset A et al. SnapperDB: a database solution for routine sequencing analysis of bacterial isolates. Bioinformatics 2018; 34:3028–3029 [View Article][PubMed]
    [Google Scholar]
  13. Wick RR, Judd LM, Holt KE. Deepbinner: demultiplexing barcoded Oxford nanopore reads with deep convolutional neural networks. PLoS Comput Biol 2018; 14:e1006583 [View Article][PubMed]
    [Google Scholar]
  14. De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article][PubMed]
    [Google Scholar]
  15. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article]
    [Google Scholar]
  16. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 2015; 12:733–735 [View Article][PubMed]
    [Google Scholar]
  17. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article][PubMed]
    [Google Scholar]
  18. H L, Handsaker B, Wysoker A, Fennell T, Ruan J et al. 1000 genome project data processing subgroup. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 2009; 25:2078–2079
    [Google Scholar]
  19. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article][PubMed]
    [Google Scholar]
  20. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA et al. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 2015; 16:294 [View Article][PubMed]
    [Google Scholar]
  21. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  22. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article][PubMed]
    [Google Scholar]
  23. Shaaban S, Cowley LA, McAteer SP, Jenkins C, Dallman TJ et al. Evolution of a zoonotic pathogen: investigating prophage diversity in enterohaemorrhagic Escherichia coli O157 by long-read sequencing. Microb Genom 2016; 2:e000096 [View Article][PubMed]
    [Google Scholar]
  24. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010 [View Article][PubMed]
    [Google Scholar]
  25. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132 [View Article][PubMed]
    [Google Scholar]
  26. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article]
    [Google Scholar]
  27. Greig DR, Jenkins C, Gharbia S, Dallman TJ. Comparison of single-nucleotide variants identified by illumina and Oxford nanopore technologies in the context of a potential outbreak of Shiga toxin-producing Escherichia coli . Gigascience 2019; 8: [View Article][PubMed]
    [Google Scholar]
  28. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  29. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article][PubMed]
    [Google Scholar]
  30. Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford nanopore sequencing. Genome Biol 2019; 20:129 [View Article][PubMed]
    [Google Scholar]
  31. Greig DR, Jenkins C, Dallman TJ. A Shiga Toxin-Encoding prophage recombination event confounds the phylogenetic relationship between two isolates of Escherichia coli O157:H7 from the same patient. Front Microbiol 2020; 11:588769 [View Article][PubMed]
    [Google Scholar]
  32. Makino K, Ishii K, Yasunaga T, Hattori M, Yokoyama K et al. Complete nucleotide sequences of 93-kb and 3.3-kb plasmids of an enterohemorrhagic Escherichia coli O157:H7 derived from Sakai outbreak. DNA Res 1998; 5:1–9 [View Article][PubMed]
    [Google Scholar]
  33. Byrne L, Dallman TJ, Adams N, Mikhail AFW, McCarthy N et al. Highly Pathogenic Clone of Shiga Toxin-Producing Escherichia coli O157:H7, England and Wales. Emerg Infect Dis 2018; 24:2303–2308 [View Article][PubMed]
    [Google Scholar]
  34. Jenkins C, Dallman TJ, Grant KA. Impact of whole genome sequencing on the investigation of food-borne outbreaks of Shiga toxin-producing Escherichia coli serogroup O157:H7, England, 2013 to 2017. Euro Surveill 2019; 24: [View Article]
    [Google Scholar]
  35. Allard MW, Stevens EL, Brown EW. All for one and one for all: the true potential of whole-genome sequencing. Lancet Infect Dis 2019; 19:683–684 [View Article][PubMed]
    [Google Scholar]
  36. Herbert LJ, Vali L, Hoyle DV, Innocent G, McKendrick IJ et al. E. coli O157 on Scottish cattle farms: evidence of local spread and persistence using repeat cross-sectional data. BMC Vet Res 2014; 10:95 [View Article][PubMed]
    [Google Scholar]
  37. Cowley LA, Dallman TJ, Fitzgerald S, Irvine N, Rooney PJ et al. Short-term evolution of Shiga toxin-producing Escherichia coli O157:H7 between two food-borne outbreaks. Microb Genom 2016; 2:e000084 [View Article][PubMed]
    [Google Scholar]
  38. Greig DR, Mikhail AFW, Dallman TJ, Jenkins C. Analysis Shiga Toxin-Encoding Bacteriophage in Shiga Toxin-Producing Escherichia coli O157:H7 stx2a/stx2c . Front Microbiol 2020; 11:577658 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000545
Loading
/content/journal/mgen/10.1099/mgen.0.000545
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error