1887

Abstract

The vaginal microbiome plays an important role in human health and species of vaginal bacteria have been associated with reproductive disease. Strain-level variation is also thought to be important, but the diversity, structure and evolutionary history of vaginal strains is not as well characterized. We developed and validated an approach to measure strain variation from metagenomic data based on SNPs within the core genomes for six species of vaginal bacteria: , , , , and . Despite inhabiting the same environment, strain diversity and structure varies across species. All species except are characterized by multiple distinct groups of strains. Even so, strain diversity is lower in the species, consistent with a more recent colonization of the human vaginal microbiome. Both strain diversity and the frequency of multi-strain samples is related to species-level diversity of the microbiome in which they occur, suggesting similar ecological factors influencing diversity within the vaginal niche. We conclude that the structure of strain-level variation provides both the motivation and means of testing whether strain-level differences contribute to the function and health consequences of the vaginal microbiome.

Funding
This study was supported by the:
  • Center for Women’s Infectious Disease Research
    • Principle Award Recipient: JustinC Fay
  • March of Dimes Foundation
    • Principle Award Recipient: NotApplicable
  • National Institute of Child Health and Human Development (Award F30HD094435)
    • Principle Award Recipient: BrettA Tortelli
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000543
2021-03-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/3/mgen000543.html?itemId=/content/journal/mgen/10.1099/mgen.0.000543&mimeType=html&fmt=ahah

References

  1. Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature 2012; 486:207–214 [View Article][PubMed]
    [Google Scholar]
  2. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J et al. Strains, functions and dynamics in the expanded human microbiome project. Nature 2017; 550:61–66 [View Article][PubMed]
    [Google Scholar]
  3. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV et al. Current understanding of the human microbiome. Nat Med 2018; 24:392–400 [View Article][PubMed]
    [Google Scholar]
  4. Goltsman DSA, Sun CL, Proctor DM, DiGiulio DB, Robaczewska A et al. Metagenomic analysis with strain-level resolution reveals fine-scale variation in the human pregnancy microbiome. Genome Res 2018; 28:1467–1480 [View Article][PubMed]
    [Google Scholar]
  5. Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res 2017; 27:626–638 [View Article][PubMed]
    [Google Scholar]
  6. Greenblum S, Carr R, Borenstein E. Extensive strain-level copy-number variation across human gut microbiome species. Cell 2015; 160:583–594 [View Article][PubMed]
    [Google Scholar]
  7. Cohan FM. Towards a conceptual and operational Union of bacterial systematics, ecology, and evolution. Philos Trans R Soc Lond B Biol Sci 2006; 361:1985–1996 [View Article][PubMed]
    [Google Scholar]
  8. Sheppard SK, Guttman DS, Fitzgerald JR. Population genomics of bacterial host adaptation. Nat Rev Genet 2018; 19:549–565 [View Article][PubMed]
    [Google Scholar]
  9. Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J et al. Genomic variation landscape of the human gut microbiome. Nature 2013; 493:45–50 [View Article][PubMed]
    [Google Scholar]
  10. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 2011; 108 Suppl 1:4680–4687 [View Article][PubMed]
    [Google Scholar]
  11. Fettweis JM, Brooks JP, Serrano MG, Sheth NU, Girerd PH et al. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology 2014; 160:2272–2282 [View Article][PubMed]
    [Google Scholar]
  12. Ma B, Forney LJ, Ravel J. Vaginal microbiome: rethinking health and disease. Annu Rev Microbiol 2012; 66:371–389 [View Article][PubMed]
    [Google Scholar]
  13. Ahmed A, Earl J, Retchless A, Hillier SL, Rabe LK et al. Comparative genomic analyses of 17 clinical isolates of Gardnerella vaginalis provide evidence of multiple genetically isolated clades consistent with subspeciation into genovars. J Bacteriol 2012; 194:3922–3937 [View Article][PubMed]
    [Google Scholar]
  14. Vaneechoutte M, Guschin A, Van Simaey L, Gansemans Y, Van Nieuwerburgh F et al. Emended description of Gardnerella vaginalis and description of Gardnerella leopoldii sp. nov., Gardnerella piotii sp. nov. and Gardnerella swidsinskii sp. nov., with delineation of 13 genomic species within the genus Gardnerella . Int J Syst Evol Microbiol 2019; 69:679–687 [View Article][PubMed]
    [Google Scholar]
  15. Potter RF, Burnham C-AD, Dantas G. In silico analysis of Gardnerella genomospecies detected in the setting of bacterial vaginosis. Clin Chem 2019; 65:1375–1387 [View Article][PubMed]
    [Google Scholar]
  16. Li W, Raoult D, Fournier P-E. Bacterial strain typing in the genomic era. FEMS Microbiol Rev 2009; 33:892–916 [View Article][PubMed]
    [Google Scholar]
  17. Schellenberg JJ, Paramel Jayaprakash T, Withana Gamage N, Patterson MH, Vaneechoutte M et al. Gardnerella vaginalis subgroups defined by cpn60 sequencing and sialidase activity in isolates from Canada, Belgium and Kenya. PLoS One 2016; 11:e0146510 [View Article][PubMed]
    [Google Scholar]
  18. Cornejo OE, Hickey RJ, Suzuki H, Forney LJ. Focusing the diversity of Gardnerella vaginalis through the lens of ecotypes. Evol Appl 2018; 11:312–324 [View Article][PubMed]
    [Google Scholar]
  19. Janulaitiene M, Gegzna V, Baranauskiene L, Bulavaitė A, Simanavicius M et al. Phenotypic characterization of Gardnerella vaginalis subgroups suggests differences in their virulence potential. PLoS One 2018; 13:e0200625 [View Article][PubMed]
    [Google Scholar]
  20. Janulaitiene M, Paliulyte V, Grinceviciene S, Zakareviciene J, Vladisauskiene A et al. Prevalence and distribution of Gardnerella vaginalis subgroups in women with and without bacterial vaginosis. BMC Infect Dis 2017; 17:394 [View Article][PubMed]
    [Google Scholar]
  21. Hill JE, Albert AYK, Group VR. VOGUE Research Group Resolution and cooccurrence patterns of Gardnerella leopoldii, G. swidsinskii, G. piotii and G. vaginalis within the vaginal microbiome. Infect Immun 2019; 87: 18 11 2019 [View Article][PubMed]
    [Google Scholar]
  22. Balashov SV, Mordechai E, Adelson ME, Gygax SE. Identification, quantification and subtyping of Gardnerella vaginalis in noncultured clinical vaginal samples by quantitative PCR. J Med Microbiol 2014; 63:162–175 [View Article][PubMed]
    [Google Scholar]
  23. Ojala T, Kankainen M, Castro J, Cerca N, Edelman S et al. Comparative genomics of Lactobacillus crispatus suggests novel mechanisms for the competitive exclusion of Gardnerella vaginalis . BMC Genomics 2014; 15:1070 [View Article][PubMed]
    [Google Scholar]
  24. France MT, Mendes-Soares H, Forney LJ. Genomic comparisons of Lactobacillus crispatus and Lactobacillus iners reveal potential ecological drivers of community composition in the vagina. Appl Environ Microbiol 2016; 82:7063–7073 [View Article][PubMed]
    [Google Scholar]
  25. Callahan BJ, DiGiulio DB, Goltsman DSA, Sun CL, Costello EK et al. Replication and refinement of a vaginal microbial signature of preterm birth in two racially distinct cohorts of US women. Proc Natl Acad Sci U S A 2017; 114:9966–9971 [View Article][PubMed]
    [Google Scholar]
  26. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA et al. DADA2: high-resolution sample inference from illumina amplicon data. Nat Methods 2016; 13:581–583 [View Article][PubMed]
    [Google Scholar]
  27. Maiden MCJ. Multilocus sequence typing of bacteria. Annu Rev Microbiol 2006; 60:561–588 [View Article][PubMed]
    [Google Scholar]
  28. Lind PA, Tobin C, Berg OG, Kurland CG, Andersson DI. Compensatory gene amplification restores fitness after inter-species gene replacements. Mol Microbiol 2010; 75:1078–1089 [View Article][PubMed]
    [Google Scholar]
  29. Kraal L, Abubucker S, Kota K, Fischbach MA, Mitreva M. The prevalence of species and strains in the human microbiome: a resource for experimental efforts. PLoS One 2014; 9:e97279 [View Article][PubMed]
    [Google Scholar]
  30. Lunter G, Goodson M. Stampy: a statistical algorithm for sensitive and fast mapping of illumina sequence reads. Genome Res 2011; 21:936–939 [View Article][PubMed]
    [Google Scholar]
  31. Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS One 2015; 10:e0128036 [View Article][PubMed]
    [Google Scholar]
  32. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article][PubMed]
    [Google Scholar]
  33. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 2015; 12:902–903 [View Article][PubMed]
    [Google Scholar]
  34. Huang W, Li L, Myers JR, Marth GT. Art: a next-generation sequencing read simulator. Bioinformatics 2012; 28:593–594 [View Article][PubMed]
    [Google Scholar]
  35. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article][PubMed]
    [Google Scholar]
  36. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20:1297–1303 [View Article][PubMed]
    [Google Scholar]
  37. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011; 43:491–498 [View Article][PubMed]
    [Google Scholar]
  38. Danecek P, Auton A, Abecasis G, Albers CA, Banks E et al. The variant call format and VCFtools. Bioinformatics 2011; 27:2156–2158 [View Article][PubMed]
    [Google Scholar]
  39. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res 2009; 19:1655–1664 [View Article][PubMed]
    [Google Scholar]
  40. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81:559–575 [View Article][PubMed]
    [Google Scholar]
  41. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012; 6:80–92 [View Article][PubMed]
    [Google Scholar]
  42. Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ et al. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front Genet 2012; 3:35 [View Article][PubMed]
    [Google Scholar]
  43. Cook DE, Andersen EC. VCF-kit: assorted utilities for the variant call format. Bioinformatics 2017; 33:btx011–012 [View Article][PubMed]
    [Google Scholar]
  44. Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol 1975; 7:256–276 [View Article][PubMed]
    [Google Scholar]
  45. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989; 123:585–595 [View Article][PubMed]
    [Google Scholar]
  46. Sung W, Ackerman MS, Dillon MM, Platt TG, Fuqua C et al. Evolution of the insertion-deletion mutation rate across the tree of life. G3 2016; 6:2583–2591 [View Article][PubMed]
    [Google Scholar]
  47. Khan S, Voordouw MJ, Hill JE. Competition among Gardnerella subgroups from the human vaginal microbiome. Front Cell Infect Microbiol 2019; 9:374 [View Article][PubMed]
    [Google Scholar]
  48. Didelot X, Maiden MCJ. Impact of recombination on bacterial evolution. Trends Microbiol 2010; 18:315–322 [View Article][PubMed]
    [Google Scholar]
  49. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res 2017; 27:824–834 [View Article][PubMed]
    [Google Scholar]
  50. Quince C, Delmont TO, Raguideau S, Alneberg J, Darling AE et al. DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biol 2017; 18:181 [View Article][PubMed]
    [Google Scholar]
  51. Tada I, Tanizawa Y, Endo A, Tohno M, Arita M. Revealing the genomic differences between two subgroups in Lactobacillus gasseri . Biosci Microbiota Food Health 2017; 36:155–159 [View Article][PubMed]
    [Google Scholar]
  52. Putonti C, Akhnoukh V, Anagnostopoulos Z, Bilek M, Colgan J et al. Draft genome sequences of six Lactobacillus gasseri and three Lactobacillus paragasseri strains isolated from the female bladder. Microbiol Resour Announc 2019; 8:e00973-19 12 Sep 2019 [View Article][PubMed]
    [Google Scholar]
  53. Tanizawa Y, Tada I, Kobayashi H, Endo A, Maeno S et al. Lactobacillus paragasseri sp. nov., a sister taxon of Lactobacillus gasseri, based on whole-genome sequence analyses. Int J Syst Evol Microbiol 2018; 68:3512–3517 [View Article][PubMed]
    [Google Scholar]
  54. Paramel Jayaprakash T, Schellenberg JJ, Hill JE. Resolution and characterization of distinct cpn60-based subgroups of Gardnerella vaginalis in the vaginal microbiota. PLoS One 2012; 7:e43009 [View Article][PubMed]
    [Google Scholar]
  55. Yeoman CJ, Yildirim S, Thomas SM, Durkin AS, Torralba M et al. Comparative genomics of Gardnerella vaginalis strains reveals substantial differences in metabolic and virulence potential. PLoS One 2010; 5:e12411 [View Article][PubMed]
    [Google Scholar]
  56. Malki K, Shapiro JW, Price TK, Hilt EE, Thomas-White K et al. Genomes of Gardnerella strains reveal an abundance of prophages within the bladder microbiome. PLoS One 2016; 11:e0166757 [View Article][PubMed]
    [Google Scholar]
  57. Bohr LL, Mortimer TD, Pepperell CS. Lateral gene transfer shapes diversity of Gardnerella spp. Front Cell Infect Microbiol 2020; 10:293 [View Article][PubMed]
    [Google Scholar]
  58. Tachedjian G, Aldunate M, Bradshaw CS, Cone RA. The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res Microbiol 2017; 168:782–792 [View Article][PubMed]
    [Google Scholar]
  59. Gause GF. Experimental analysis of vito volterra’s mathematical theory of the struggle for existence. Science 2036; 1934:16–17
    [Google Scholar]
  60. Schoener TW. Resource partitioning in ecological communities. Science 1974; 185:27–39 [View Article][PubMed]
    [Google Scholar]
  61. Kim TK, Thomas SM, Ho M, Sharma S, Reich CI et al. Heterogeneity of vaginal microbial communities within individuals. J Clin Microbiol 2009; 47:1181–1189 [View Article][PubMed]
    [Google Scholar]
  62. Mendes-Soares H, Krishnan V, Settles ML, Ravel J, Brown CJ et al. Fine-scale analysis of 16S rRNA sequences reveals a high level of taxonomic diversity among vaginal Atopobium spp. Pathog Dis 2015; 73: 15 03 2015 [View Article][PubMed]
    [Google Scholar]
  63. Yildirim S, Yeoman CJ, Janga SC, Thomas SM, Ho M et al. Primate vaginal microbiomes exhibit species specificity without universal Lactobacillus dominance. Isme J 2014; 8:2431–2444 [View Article][PubMed]
    [Google Scholar]
  64. Stumpf RM, Wilson BA, Rivera A, Yildirim S, Yeoman CJ et al. The primate vaginal microbiome: comparative context and implications for human health and disease. Am J Phys Anthropol 2013; 152 Suppl 57:119–134 [View Article][PubMed]
    [Google Scholar]
  65. Rivera AJ, Stumpf RM, Wilson B, Leigh S, Salyers AA. Baboon vaginal microbiota: an overlooked aspect of primate physiology. Am J Primatol 2010; 72:n/a–74 [View Article][PubMed]
    [Google Scholar]
  66. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus . FEMS Microbiol Rev 2017; 41:S27–S48 [View Article][PubMed]
    [Google Scholar]
  67. Mendes-Soares H, Suzuki H, Hickey RJ, Forney LJ. Comparative functional genomics of Lactobacillus spp. reveals possible mechanisms for specialization of vaginal lactobacilli to their environment. J Bacteriol 2014; 196:1458–1470 [View Article][PubMed]
    [Google Scholar]
  68. Nielsen R, Akey JM, Jakobsson M, Pritchard JK, Tishkoff S et al. Tracing the peopling of the world through genomics. Nature 2017; 541:302–310 [View Article][PubMed]
    [Google Scholar]
  69. Greenbaum S, Greenbaum G, Moran-Gilad J, Weintraub AY. Ecological dynamics of the vaginal microbiome in relation to health and disease. Am J Obstet Gynecol 2019; 220:324–335 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000543
Loading
/content/journal/mgen/10.1099/mgen.0.000543
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error