1887

Abstract

The RNA binding domain abundant in apicomplexans (RAP) is a protein domain identified in a diverse group of proteins, called RAP proteins, many of which have been shown to be involved in RNA binding. To understand the expansion and potential function of the RAP proteins, we conducted a hidden Markov model based screen among the proteomes of 54 eukaryotes, 17 bacteria and 12 archaea. We demonstrated that the domain is present in closely and distantly related organisms with particular expansions in Alveolata and Chlorophyta, and are not unique to Apicomplexa as previously believed. All RAP proteins identified can be decomposed into two parts. In the N-terminal region, the presence of variable helical repeats seems to participate in the specific targeting of diverse RNAs, while the RAP domain is mostly identified in the C-terminal region and is highly conserved across the different phylogenetic groups studied. Several conserved residues defining the signature motif could be crucial to ensure the function(s) of the RAP proteins. Modelling of RAP domains in apicomplexan parasites confirmed an ⍺/β structure of a restriction endonuclease-like fold. The phylogenetic trees generated from multiple alignment of RAP domains and full-length proteins from various distantly related eukaryotes indicated a complex evolutionary history of this family. We further discuss these results to assess the potential function of this protein family in apicomplexan parasites.

Funding
This study was supported by the:
  • Academic Senate, University of California, Riverside (Award NIFA-Hatch-225935)
    • Principle Award Recipient: KarineG. Le Roch
  • National Institute of General Medical Sciences (Award R35 GM118187)
    • Principle Award Recipient: AdamGodzik
  • National Institute of Allergy and Infectious Diseases (Award R01 AI142743)
    • Principle Award Recipient: KarineG. Le Roch
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000541
2021-03-03
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/3/mgen000541.html?itemId=/content/journal/mgen/10.1099/mgen.0.000541&mimeType=html&fmt=ahah

References

  1. WHO World Malaria Report Geneva: World Health Organization; 2019
    [Google Scholar]
  2. Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T et al. A genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes. Cell 2016; 166:1423–1435 [View Article][PubMed]
    [Google Scholar]
  3. Zhang M, Wang C, Otto TD, Oberstaller J, Liao X et al. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science 2018; 360:eaap7847 [View Article][PubMed]
    [Google Scholar]
  4. Sanderson T, Rayner JC. PhenoPlasm: a database of disruption phenotypes for malaria parasite genes. Wellcome Open Res 2017; 2:45 [View Article][PubMed]
    [Google Scholar]
  5. Lee I, Hong W. RAP – a putative RNA-binding domain. Trends Biochem Sci 2004; 29:567–570 [View Article][PubMed]
    [Google Scholar]
  6. Simarro M, Gimenez-Cassina A, Kedersha N, Lazaro JB, Adelmant GO et al. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration. Biochem Biophys Res Commun 2010; 401:440–446 [View Article][PubMed]
    [Google Scholar]
  7. Jourdain AA, Koppen M, Rodley CD, Maundrell K, Gueguen N et al. A mitochondria-specific isoform of FASTK is present in mitochondrial RNA granules and regulates gene expression and function. Cell Rep 2015; 10:1110–1121 [View Article][PubMed]
    [Google Scholar]
  8. Rivier C, Goldschmidt-Clermont M, Rochaix JD. Identification of an RNA-protein complex involved in chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii . EMBO J 2001; 20:1765–1773 [View Article][PubMed]
    [Google Scholar]
  9. Eberhard S, Loiselay C, Drapier D, Bujaldon S, Girard-Bascou J et al. Dual functions of the nucleus-encoded factor TDA1 in trapping and translation activation of atpA transcripts in Chlamydomonas reinhardtii chloroplasts. Plant J 2011; 67:1055–1066 [View Article][PubMed]
    [Google Scholar]
  10. Kleinknecht L, Wang F, Stübe R, Philippar K, Nickelsen J et al. RAP, the sole octotricopeptide repeat protein in Arabidopsis, is required for chloroplast 16S rRNA maturation. Plant Cell 2014; 26:777–787 [View Article][PubMed]
    [Google Scholar]
  11. Tian Q, Taupin JL, Elledge S, Robertson M, Anderson P. Fas-activated serine/threonine kinase (FAST) phosphorylates TIA-1 during Fas-mediated apoptosis. J Exp Med 1995; 182:865–874 [View Article][PubMed]
    [Google Scholar]
  12. Boehm E, Zaganelli S, Maundrell K, Jourdain AA, Thore S et al. FASTKD1 and FASTKD4 have opposite effects on expression of specific mitochondrial RNAs, depending upon their endonuclease-like RAP domain. Nucleic Acids Res 2017; 45:6135–6146 [View Article][PubMed]
    [Google Scholar]
  13. Boehm E, Zornoza M, Jourdain AA, Delmiro Magdalena A, García-Consuegra I et al. Role of fast kinase domains 3 (FASTKD3) in post-transcriptional regulation of mitochondrial gene expression. J Biol Chem 2016; 291:25877–25887 [View Article][PubMed]
    [Google Scholar]
  14. Antonicka H, Shoubridge EA. Mitochondrial RNA granules are centers for posttranscriptional RNA processing and ribosome biogenesis. Cell Rep 2015; 10:920–932 [View Article][PubMed]
    [Google Scholar]
  15. Jourdain AA, Popow J, De La Fuente MA, Martinou J-C, Anderson P et al. The FASTK family of proteins: emerging regulators of mitochondrial RNA biology. Nucleic Acids Res 2017; 45:10941–10947 [View Article][PubMed]
    [Google Scholar]
  16. Boulouis A, Drapier D, Razafimanantsoa H, Wostrikoff K, Tourasse NJ et al. Spontaneous dominant mutations in Chlamydomonas highlight ongoing evolution by gene diversification. Plant Cell 2015; 27:984–1001 [View Article][PubMed]
    [Google Scholar]
  17. Blatch GL, Lässle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 1999; 21:932–939 [View Article][PubMed]
    [Google Scholar]
  18. Vetting MW, Hegde SS, Fajardo JE, Fiser A, Roderick SL et al. Pentapeptide repeat proteins. Biochemistry 2006; 45:1–10 [View Article][PubMed]
    [Google Scholar]
  19. Small ID, Peeters N. The PPR motif - a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 2000; 25:45–47 [View Article][PubMed]
    [Google Scholar]
  20. Rahire M, Laroche F, Cerutti L, Rochaix J-D. Identification of an OPR protein involved in the translation initiation of the PsaB subunit of photosystem I. Plant J 2012; 72:652–661 [View Article][PubMed]
    [Google Scholar]
  21. Hillebrand A, Matz JM, Almendinger M, Müller K, Matuschewski K et al. Identification of clustered organellar short (cos) RNAs and of a conserved family of organellar RNA-binding proteins, the heptatricopeptide repeat proteins, in the malaria parasite. Nucleic Acids Res 2018; 46:10417–10431 [View Article][PubMed]
    [Google Scholar]
  22. Aubourg S, Boudet N, Kreis M, Lecharny A. In Arabidopsis thaliana, 1% of the genome codes for a novel protein family unique to plants. Plant Mol Biol 2000; 42:603–613 [View Article][PubMed]
    [Google Scholar]
  23. Cheng S, Gutmann B, Zhong X, Ye Y, Fisher MF et al. Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants. Plant J 2016; 85:532–547 [View Article][PubMed]
    [Google Scholar]
  24. Das AK, Cohen PTW, Barford D. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J 1998; 17:1192–1199 [View Article][PubMed]
    [Google Scholar]
  25. Schmitz-Linneweber C, Small I. Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 2008; 13:663–670 [View Article][PubMed]
    [Google Scholar]
  26. Barkan A, Small I. Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 2014; 65:415–442 [View Article][PubMed]
    [Google Scholar]
  27. Zhang Z, Tan J, Shi Z, Xie Q, Xing Y et al. Albino leaf1 that encodes the sole octotricopeptide repeat protein is responsible for chloroplast development. Plant Physiol 2016; 171:1182–1191 [View Article][PubMed]
    [Google Scholar]
  28. Wang F, Johnson X, Cavaiuolo M, Bohne AV, Nickelsen J et al. Two Chlamydomonas OPR proteins stabilize chloroplast mRNAs encoding small subunits of photosystem II and cytochrome b6f . Plant J 2015; 82:861–873 [View Article][PubMed]
    [Google Scholar]
  29. Colcombet J, Lopez-Obando M, Heurtevin L, Bernard C, Martin K et al. Systematic study of subcellular localization of Arabidopsis PPR proteins confirms a massive targeting to organelles. RNA Biol 2013; 10:1557–1575 [View Article][PubMed]
    [Google Scholar]
  30. Zhang YF, Suzuki M, Sun F, Tan BC. The mitochondrion-targeted pentatricopeptide REPEAT78 protein is required for nad5 mature mRNA stability and seed development in maize. Mol Plant 2017; 10:1321–1333 [View Article][PubMed]
    [Google Scholar]
  31. Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 2004; 16:2089–2103 [View Article][PubMed]
    [Google Scholar]
  32. Manna S. An overview of pentatricopeptide repeat proteins and their applications. Biochimie 2015; 113:93–99
    [Google Scholar]
  33. Eddy SR. A new generation of homology search tools based on probabilistic inference. Genome Inform 2009; 23:205–211[PubMed]
    [Google Scholar]
  34. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539 [View Article][PubMed]
    [Google Scholar]
  35. Madeira F, Park YM, Lee J, Buso N, Gur T et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 2019; 47:W636–W641 [View Article][PubMed]
    [Google Scholar]
  36. Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article][PubMed]
    [Google Scholar]
  37. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007; 23:127–128 [View Article][PubMed]
    [Google Scholar]
  38. Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 2021; 49:D458–D460 [View Article][PubMed]
    [Google Scholar]
  39. Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 1994; 2:28–36[PubMed]
    [Google Scholar]
  40. Fukasawa Y, Tsuji J, Fu S-C, Tomii K, Horton P et al. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics 2015; 14:1113–1126 [View Article][PubMed]
    [Google Scholar]
  41. Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 1996; 241:779–786 [View Article][PubMed]
    [Google Scholar]
  42. Emanuelsson O, Nielsen H, Brunak S, Von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 2000; 300:1005–1016 [View Article][PubMed]
    [Google Scholar]
  43. Zuegge J, Ralph S, Schmuker M, McFadden GI, Schneider G. Deciphering apicoplast targeting signals – feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene 2001; 280:19–26 [View Article][PubMed]
    [Google Scholar]
  44. Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M et al. Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum . Science 2003; 299:705–708 [View Article][PubMed]
    [Google Scholar]
  45. Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 2018; 430:2237–2243 [View Article][PubMed]
    [Google Scholar]
  46. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  47. Ye Y, Godzik A. FATCAT: a web server for flexible structure comparison and structure similarity searching. Nucleic Acids Res 2004; 32:W582–W585 [View Article][PubMed]
    [Google Scholar]
  48. Li Z, Natarajan P, Ye Y, Hrabe T, Godzik A. POSA: a user-driven, interactive multiple protein structure alignment server. Nucleic Acids Res 2014; 42:W240–W245 [View Article][PubMed]
    [Google Scholar]
  49. Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 2014; 47:5.6.1–5.6.5 [View Article]
    [Google Scholar]
  50. Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 2014; 42:W320–W324 [View Article][PubMed]
    [Google Scholar]
  51. Schrödinger The PyMOL Molecular Graphics System version 2.0 New York: Schrödinger; 2017
  52. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A et al. The Pfam protein families database in 2019. Nucleic Acids Res 2019; 47:D427–D432 [View Article][PubMed]
    [Google Scholar]
  53. Woo YH, Ansari H, Otto TD, Klinger CM, Kolisko M et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. Elife 2015; 4:e06974 [View Article][PubMed]
    [Google Scholar]
  54. Bunnik EM, Batugedara G, Saraf A, Prudhomme J, Florens L et al. The mRNA-bound proteome of the human malaria parasite Plasmodium falciparum . Genome Biol 2016; 17:147 [View Article][PubMed]
    [Google Scholar]
  55. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 2019; 47:D351–D360 [View Article][PubMed]
    [Google Scholar]
  56. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum . Science 2004; 304:441–445 [View Article][PubMed]
    [Google Scholar]
  57. Henriquez FL, Richards TA, Roberts F, McLeod R, Roberts CW. The unusual mitochondrial compartment of Cryptosporidium parvum . Trends Parasitol 2005; 21:68–74 [View Article][PubMed]
    [Google Scholar]
  58. Pain A, Renauld H, Berriman M, Murphy L, Yeats CA et al. Genome of the host-cell transforming parasite Theileria annulata compared with T. parva . Science 2005; 309:131–133 [View Article][PubMed]
    [Google Scholar]
  59. Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax . Nature 2008; 455:757–763 [View Article][PubMed]
    [Google Scholar]
  60. Hammani K, Bonnard G, Bouchoucha A, Gobert A, Pinker F et al. Helical repeats modular proteins are major players for organelle gene expression. Biochimie 2014; 100:141–150 [View Article][PubMed]
    [Google Scholar]
  61. Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res 2012; 40:7016–7045 [View Article][PubMed]
    [Google Scholar]
  62. Muralidharan V, Goldberg DE. Asparagine repeats in Plasmodium falciparum proteins: good for nothing?. PLoS Pathog 2013; 9:e1003488 [View Article][PubMed]
    [Google Scholar]
  63. Bushell E, Gomes AR, Sanderson T, Anar B, Girling G et al. Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell 2017; 170:260–272 [View Article][PubMed]
    [Google Scholar]
  64. Tang Y, Meister TR, Walczak M, Pulkoski-Gross MJ, Hari SB et al. A mutagenesis screen for essential plastid biogenesis genes in human malaria parasites. PLoS Biol 2019; 17:e3000136 [View Article][PubMed]
    [Google Scholar]
  65. Seidi A, Muellner-Wong LS, Rajendran E, Tjhin ET, Dagley LF et al. Elucidating the mitochondrial proteome of Toxoplasma gondii reveals the presence of a divergent cytochrome c oxidase. Elife 2018; 7:e38131 [View Article][PubMed]
    [Google Scholar]
  66. Moore RB, Oborník M, Janouškovec J, Chrudimský T, Vancová M et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature 2008; 451:959–963 [View Article][PubMed]
    [Google Scholar]
  67. Janouškovec J, Horák A, Oborník M, Lukeš J, Keeling PJ. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 2010; 107:10949–10954 [View Article][PubMed]
    [Google Scholar]
  68. Petersen J, Ludewig AK, Michael V, Bunk B, Jarek M et al. Chromera velia, endosymbioses and the rhodoplex hypothesis – plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol 2014; 6:666–684 [View Article][PubMed]
    [Google Scholar]
  69. Ševčíková T, Horák A, Klimeš V, Zbránková V, Demir-Hilton E. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte?. Sci Rep 2015; 5:10134 [View Article][PubMed]
    [Google Scholar]
  70. Hikosaka K, Kita K, Tanabe K. Diversity of mitochondrial genome structure in the phylum Apicomplexa. Mol Biochem Parasitol 2013; 188:26–33 [View Article][PubMed]
    [Google Scholar]
  71. Feagin JE, Harrell MI, Lee JC, Coe KJ, Sands BH et al. The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum . PLoS One 2012; 7:e38320 [View Article][PubMed]
    [Google Scholar]
  72. Hikosaka K, Watanabe Y-I, Kobayashi F, Waki S, Kita K et al. Highly conserved gene arrangement of the mitochondrial genomes of 23 Plasmodium species. Parasitol Int 2011; 60:175–180 [View Article][PubMed]
    [Google Scholar]
  73. Flegontov P, Michálek J, Janouškovec J, Lai D-H, Jirků M et al. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol Biol Evol 2015; 32:1115–1131 [View Article][PubMed]
    [Google Scholar]
  74. Kamikawa R, Inagaki Y, Sako Y. Fragmentation of mitochondrial large subunit rRNA in the dinoflagellate Alexandrium catenella and the evolution of rRNA structure in alveolate mitochondria. Protist 2007; 158:239–245 [View Article][PubMed]
    [Google Scholar]
  75. Waller RF, Jackson CJ. Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 2009; 31:237–245 [View Article][PubMed]
    [Google Scholar]
  76. Nash EA, Nisbet RER, Barbrook AC, Howe CJ. Dinoflagellates: a mitochondrial genome all at sea. Trends Genet 2008; 24:328–335 [View Article][PubMed]
    [Google Scholar]
  77. Jackson CJ, Norman JE, Schnare MN, Gray MW, Keeling PJ et al. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria. BMC Biol 2007; 5:41 [View Article][PubMed]
    [Google Scholar]
  78. Imanian B, Keeling PJ. The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages. BMC Evol Biol 2007; 7:172 [View Article][PubMed]
    [Google Scholar]
  79. Nedelcu AM, Spencer DF, Denovan-Wright EM, Lee RW. Discontinuous mitochondrial and chloroplast large subunit ribosomal RNAs among green algae: phylogenetic implications. J Phycol 1996; 32:103–111 [View Article]
    [Google Scholar]
  80. Denovan-Wright EM, Sankoff D, Spencer DF, Lee RW. Evolution of fragmented mitochondrial ribosomal RNA genes in Chlamydomonas . J Mol Evol 1996; 42:382–391 [View Article][PubMed]
    [Google Scholar]
  81. Denovan-Wright EM, Lee RW. Comparative structure and genomic organization of the discontinuous mitochondrial ribosomal RNA genes of Chlamydomonas eugametos and Chlamydomonas reinhardtii . J Mol Biol 1994; 241:298–311 [View Article][PubMed]
    [Google Scholar]
  82. Heinonen TY, Schnare MN, Young PG, Gray MW. Rearranged coding segments, separated by a transfer RNA gene, specify the two parts of a discontinuous large subunit ribosomal RNA in Tetrahymena pyriformis mitochondria. J Biol Chem 1987; 262:2879–2887[PubMed]
    [Google Scholar]
  83. Burger G, Zhu Y, Littlejohn TG, Greenwood SJ, Schnare MN et al. Complete sequence of the mitochondrial genome of Tetrahymena pyriformis and comparison with Paramecium aurelia mitochondrial DNA. J Mol Biol 2000; 297:365–380 [View Article][PubMed]
    [Google Scholar]
  84. de Graaf RM, van Alen TA, Dutilh BE, Kuiper JWP, van Zoggel HJAA et al. The mitochondrial genomes of the ciliates Euplotes minuta and Euplotes crassus . BMC Genomics 2009; 10:514 [View Article][PubMed]
    [Google Scholar]
  85. Swart EC, Nowacki M, Shum J, Stiles H, Higgins BP et al. The Oxytricha trifallax mitochondrial genome. Genome Biol Evol 2012; 4:136–154 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000541
Loading
/content/journal/mgen/10.1099/mgen.0.000541
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error