1887

Abstract

The mobilome plays a crucial role in bacterial adaptation and is therefore a starting point to understand and establish the gene flow occurring in the process of bacterial evolution. This is even more so if we consider that the mobilome of environmental bacteria can be the reservoir of genes that may later appear in the clinic. Recently, new genera have been proposed in the family , including the genus , which encompasses dozens of species of agricultural, biotechnological, clinical and ecological importance, being ubiquitous in several environments. The current scenario in the mobilome has some bias because most of the characterized mycobacteriophages were isolated using a single host strain, and the few plasmids reported mainly relate to the genus . To fill in the gaps in these issues, we performed a systematic study of these mobile elements based on 242 available genomes of the genus . The analyses identified 156 putative plasmids (19 conjugative, 45 mobilizable and 92 non-mobilizable) and 566 prophages in 86 and 229 genomes, respectively. Moreover, a contig was characterized by resembling an actinomycete integrative and conjugative element (AICE). Within this diversity of mobile genetic elements, there is a pool of genes associated with several canonical functions, in addition to adaptive traits, such as virulence and resistance to antibiotics and metals (mercury and arsenic). The type-VII secretion system was a common feature in the predicted plasmids, being associated with genes encoding virulent proteins (EsxA, EsxB, PE and PPE). In addition to the characterization of plasmids and prophages of the family , this study showed an abundance of these genetic elements in a dozen species of the genus .

Funding
This study was supported by the:
  • Fundação Oswaldo Cruz
    • Principle Award Recipient: NotApplicable
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Award 001)
    • Principle Award Recipient: NotApplicable
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000533
2021-02-23
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/3/mgen000533.html?itemId=/content/journal/mgen/10.1099/mgen.0.000533&mimeType=html&fmt=ahah

References

  1. Gupta RS, Lo B, Son J. Phylogenomics and comparative genomic studies robustly support division of the genus mycobacterium into an emended genus mycobacterium and four novel genera [published correction appears in Front Microbiol. 2019 Apr 09;10:714]. Front Microbiol 2018; 9:67
    [Google Scholar]
  2. Morgado SM, Paulo Vicente AC. Genomics of Atlantic forest Mycobacteriaceae strains unravels a mobilome diversity with a novel integrative conjugative element and plasmids harbouring T7SS. Microb Genom 2020; 6:
    [Google Scholar]
  3. Harrison E, Brockhurst MA. Plasmid-Mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol 2012; 20:262–267
    [Google Scholar]
  4. Lorenzo-Díaz F, Fernández-López C, Lurz R, Bravo A, Espinosa M. Crosstalk between vertical and horizontal gene transfer: plasmid replication control by a conjugative relaxase. Nucleic Acids Res 2017; 45:7774–7785
    [Google Scholar]
  5. Kothari A, Soneja D, Tang A, Carlson HK, Deutschbauer AM. Native plasmid-encoded mercury resistance genes are functional and demonstrate natural transformation in environmental bacterial isolates. mSystems 2019; 4:e00588-19
    [Google Scholar]
  6. Rodríguez-Beltrán J, Sørum V, Toll-Riera M, de la Vega C, Peña-Miller R. Genetic dominance governs the evolution and spread of mobile genetic elements in bacteria. Proc Natl Acad Sci U S A 2020; 117:15755–15762
    [Google Scholar]
  7. Carr VR, Shkoporov A, Hill C, Mullany P, Moyes DL. Probing the mobilome: discoveries in the dynamic microbiome [published online ahead of print, 2020 May 11]. Trends Microbiol 2020; S0966-842X:30128–1
    [Google Scholar]
  8. Durrant MG, MM L, Siranosian BA, Montgomery SB, Bhatt AS. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation. Cell Host Microbe 2020; 27:140–153
    [Google Scholar]
  9. Shintani M, Sanchez ZK, Kimbara K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front Microbiol 2015; 6:242
    [Google Scholar]
  10. Gray TA, Derbyshire KM. Blending genomes: distributive conjugal transfer in mycobacteria, a sexier form of HGT. Mol Microbiol 2018; 108:601–613
    [Google Scholar]
  11. Dumas E, Boritsch EC, Vandenbogaert M, de la Vega RCR, Thiberge J. Mycobacterial pan-genome analysis suggests important role of plasmids in the radiation of type VII secretion systems. Genome Biol Evol. 2016; 8:387–402
    [Google Scholar]
  12. Newton-Foot M, Warren RM, Sampson SL, van Helden PD, Gey van Pittius NC. The plasmid-mediated evolution of the mycobacterial Esx (type VII) secretion systems. BMC Evol Biol. 2016; 16:62
    [Google Scholar]
  13. Mortimer TD, Weber AM, Pepperell CS. Evolutionary thrift: mycobacteria Repurpose plasmid diversity during adaptation of type VII secretion systems. Genome Biol Evol 2017; 9:398–413
    [Google Scholar]
  14. Kallimanis A, Karabika E, Mavromatis K, Lapidus A, Labutti KM. Complete genome sequence of Mycobacterium sp. strain (Spyr1) and reclassification to Mycobacterium gilvum Spyr1. Stand Genomic Sci 2011; 5:144–153
    [Google Scholar]
  15. Greninger AL, Cunningham G, JM Y, Hsu ED, Chiu CY. Draft genome sequence of Mycobacterium elephantis strain LiPA. Genome Announc. 2015; 3:e00691-15
    [Google Scholar]
  16. Levasseur A, Asmar S, Robert C, Drancourt M. Draft genome sequence of Mycobacterium houstonense strain ATCC 49403T. Genome Announc. 2016; 4:e00443-16
    [Google Scholar]
  17. de Man TJ, Perry KA, Lawsin A, Coulliette AD, Jensen B. Draft genome sequence of Mycobacterium wolinskyi, a Rapid-Growing species of nontuberculous mycobacteria. Genome Announc 2016; 4:e00138-16
    [Google Scholar]
  18. Bouam A, Robert C, Croce O, Levasseur A, Drancourt M. Draft genome sequence of Mycobacterium boenickei CIP 107829. Genome Announc 2017; 5:e00292-17
    [Google Scholar]
  19. Bouam A, Levasseur A, Drancourt M. Draft genome sequence of Mycobacterium porcinum CSURP1564. Genome Announc 2018; 6:e00291-18
    [Google Scholar]
  20. Fukano H, Yoshida M, Shouji M, Hatta S, Maruyama D. Draft genome sequence of Mycolicibacterium sp. strain NCC-Tsukiji, isolated from blood culture of a patient with malignant lymphoma. Microbiol Resour Announc 2019; 8:e01575-18
    [Google Scholar]
  21. Zsilinszky I, Gyula P, Bihari Z, Fehér B, Szabó Z. Draft genome sequence of Mycolicibacterium sp. strain CH28, a potential degrader of diisopropyl ether, isolated from pharmaceutical wastewater. Microbiol Resour Announc 2019; 8:e00682-19
    [Google Scholar]
  22. Komatsu T, Ohya K, Sawai K, Odoi JO, Otsu K. Draft genome sequences of Mycolicibacterium peregrinum isolated from a pig with lymphadenitis and from soil on the same Japanese pig farm. BMC Res Notes. 2019; 12:341
    [Google Scholar]
  23. Nouioui I, Sangal V, Cortés-Albayay C, Jando M, Igual JM. Mycolicibacterium stellerae sp. nov., a rapidly growing scotochromogenic strain isolated from Stellera chamaejasme . Int J Syst Evol Microbiol 2019; 69:3465–3471
    [Google Scholar]
  24. Ong JFM, Tan LT. Draft genome sequence of Mycolicibacterium sp. strain 018/SC-01/001, isolated from the marine sponge Iotrochota sp. Microbiol Resour Announc 2019; 8:e01019-19
    [Google Scholar]
  25. Sánchez M, Blesa A, Sacristán-Horcajada E, Berenguer J. Complete genome sequence of Mycolicibacterium hassiacum DSM 44199. Microbiol Resour Announc. 2019; 8:e01522-18
    [Google Scholar]
  26. Vatlin AA, Shur KV, Danilenko VN, Maslov DA. Draft genome sequences of 12 Mycolicibacterium smegmatis strains resistant to imidazo[1,2-b][1,2,4,5]Tetrazines. Microbiol Resour Announc 2019; 8:e00263-19
    [Google Scholar]
  27. Rauzier J, Moniz-Pereira J, Gicquel-Sanzey B. Complete nucleotide sequence of pAL5000, a plasmid from Mycobacterium fortuitum . Gene 1988; 71:315–321
    [Google Scholar]
  28. Bachrach G, Colston MJ, Bercovier H, Bar-Nir D, Anderson C. A new single-copy mycobacterial plasmid, pMF1, from Mycobacterium fortuitum which is compatible with the pAL5000 replicon. Microbiology 2000; 146:297–303
    [Google Scholar]
  29. Morgado SM, Marín MA, Freitas FS, Fonseca EL, Vicente ACP. Complete plasmid sequence carrying type IV-like and type VII secretion systems from an atypical mycobacteria strain. Mem Inst Oswaldo Cruz 2017; 112:514–516
    [Google Scholar]
  30. Ren L, Fan S, Wang J, Ruth N, Qiao C. Complete genome sequence of a phthalic acid esters degrading Mycobacterium sp. YC-RL4. Braz J Microbiol 2017; 48:607–609
    [Google Scholar]
  31. Hatfull GF. Mycobacteriophages. Microbiol Spectr. 2018; 6:
    [Google Scholar]
  32. Pope WH, Bowman CA, Russell DA, Jacobs-Sera D, Asai DJ. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. Elife 2015; 4:e06416
    [Google Scholar]
  33. Singh S, Godavarthi S, Kumar A, Sen R. A mycobacteriophage genomics approach to identify novel mycobacteriophage proteins with mycobactericidal properties. Microbiology 2019; 165:722–736
    [Google Scholar]
  34. Eddy SR. Accelerated profile HMM searches. PLOS Comp. Biol 2011; 7:e1002195
    [Google Scholar]
  35. Jørgensen TS, Xu Z, Hansen MA, Sørensen SJ, Hansen LH. Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. PloS one 2014; 9:e87924
    [Google Scholar]
  36. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28:3150–3152
    [Google Scholar]
  37. Arndt D, Grant JR, Marcu A, Sajed T, Pon A. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21
    [Google Scholar]
  38. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 15:2068–2069
    [Google Scholar]
  39. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701
    [Google Scholar]
  40. Jones P, Binns D, Chang HY, Fraser M, Li W. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014; 30:1236–1240
    [Google Scholar]
  41. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013; 57:3348–3357
    [Google Scholar]
  42. Gibson MK, Forsberg KJ, Dantas G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. Isme J 2015; 9:207–216
    [Google Scholar]
  43. Chen L, Yang J, Yu J, Yao Z, Sun L. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005; 33:D325–328
    [Google Scholar]
  44. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771
    [Google Scholar]
  45. Redondo-Salvo S, Fernández-López R, Ruiz R, Vielva L, de Toro M. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat Commun 2020; 11:3602
    [Google Scholar]
  46. Ummels R, Abdallah AM, Kuiper V, Aâjoud A, Sparrius M. Identification of a novel conjugative plasmid in mycobacteria that requires both type IV and type VII secretion. mBio 2014; 5:e01744-14
    [Google Scholar]
  47. Ghinet MG, Bordeleau E, Beaudin J, Brzezinski R, Roy S. Uncovering the prevalence and diversity of integrating conjugative elements in actinobacteria. PLoS One 2011; 6:e27846
    [Google Scholar]
  48. Li X, Xie Y, Liu M, Tai C, Sun J. oriTfinder: a web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements. Nucleic Acids Res 2018; 46:W229–W234
    [Google Scholar]
  49. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780
    [Google Scholar]
  50. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321
    [Google Scholar]
  51. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 2016; 4:e2584
    [Google Scholar]
  52. Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope W, Russell DA. Comparative genomic analysis of 60 mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol 2010; 397:119–143
    [Google Scholar]
  53. Lanza VF, Baquero F, de la Cruz F, Coque TM. AcCNET (accessory genome constellation network): comparative genomics software for accessory genome analysis using bipartite networks. Bioinformatics 2017; 33:283–285
    [Google Scholar]
  54. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13:2498–2504
    [Google Scholar]
  55. Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 2015; 43:W7–W14
    [Google Scholar]
  56. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245
    [Google Scholar]
  57. RStudio Team RStudio: Integrated Development for R. RStudio Boston, MA, USA: 2015
    [Google Scholar]
  58. Fedrizzi T, Meehan CJ, Grottola A, Giacobazzi E, Fregni Serpini G. Genomic characterization of nontuberculous mycobacteria. Sci Rep 2017; 7:45258
    [Google Scholar]
  59. Leão SC, Matsumoto CK, Carneiro A, Ramos RT, Nogueira CL. The detection and sequencing of a broad-host-range conjugative IncP-1β plasmid in an epidemic strain of Mycobacterium abscessus subsp. bolletii [published correction appears in PLoS One. 2013;8(9).10.1371/annotation/5dd55ed1-2fb6-4672-9142-fb01331567e1]. PLoS One 2013; 8:e60746
    [Google Scholar]
  60. Uchiya K, Takahashi H, Nakagawa T, Yagi T, Moriyama M. Characterization of a novel plasmid, pMAH135, from Mycobacterium avium subsp. hominissuis. PLoS One. 2015; 10:e0117797
    [Google Scholar]
  61. Lee H, Kim BJ, Kim BR, Kook YH, Kim BJ. The development of a novel Mycobacterium-Escherichia coli shuttle vector system using pMyong2, a linear plasmid from Mycobacterium yongonense DSM 45126T. PLoS One. 2015; 10:e0122897
    [Google Scholar]
  62. Seniya SP, Yadav P, Jain V. Construction of E. coli-Mycobacterium shuttle vectors with a variety of expression systems and polypeptide tags for gene expression in mycobacteria. PLoS One. 2020; 15:e0230282
    [Google Scholar]
  63. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EP, de la Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev 2010; 74:434–452
    [Google Scholar]
  64. Thoma L, Muth G. The conjugative DNA-transfer apparatus of Streptomyces. Int J Med Microbiol 2015; 305:224–229
    [Google Scholar]
  65. Hochhut B, Marrero J, Waldor MK. Mobilization of plasmids and chromosomal DNA mediated by the SXT element, a constin found in Vibrio cholerae O139. J Bacteriol 2000; 182:2043–2047
    [Google Scholar]
  66. Douard G, Praud K, Cloeckaert A, Doublet B. The Salmonella genomic island 1 is specifically mobilized in trans by the IncA/C multidrug resistance plasmid family. PLoS One 2010; 5:e15302
    [Google Scholar]
  67. Lee CA, Thomas J, Grossman AD. The Bacillus subtilis conjugative transposon ICEBs1 mobilizes plasmids lacking dedicated mobilization functions. J Bacteriol 2012; 194:3165–3172
    [Google Scholar]
  68. Ramsay JP, Kwong SM, Murphy RJ, Eto KY, Price KJ. An updated view of plasmid conjugation and mobilization in Staphylococcus . Mob Genet Elements. 2016; 6:e1208317
    [Google Scholar]
  69. Guédon G, Libante V, Coluzzi C, Payot S, Leblond-Bourget N. The obscure world of integrative and mobilizable elements, highly widespread elements that Pirate bacterial conjugative systems. Genes (Basel). 2017; 8:337
    [Google Scholar]
  70. Garcillán-Barcia MP, Francia MV, de la Cruz F. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 2009; 33:657–687
    [Google Scholar]
  71. Klümper U, Riber L, Dechesne A, Sannazzarro A, Hansen LH. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. Isme J. 2015; 9:934–945
    [Google Scholar]
  72. Guglielmini J, de la Cruz F, Rocha EP. Evolution of conjugation and type IV secretion systems. Mol Biol Evol 2013; 30:315–331
    [Google Scholar]
  73. Guzmán-Herrador DL, Llosa M. The secret life of conjugative relaxases. Plasmid 2019; 104:102415
    [Google Scholar]
  74. Panda A, Drancourt M, Tuller T, Pontarotti P. Genome-Wide analysis of horizontally acquired genes in the genus Mycobacterium. Sci Rep 2018; 8:14817
    [Google Scholar]
  75. Bordeleau E, Ghinet MG, Burrus V. Diversity of integrating conjugative elements in actinobacteria: coexistence of two mechanistically different DNA-translocation systems. Mob Genet Elements 2012; 2:119–124
    [Google Scholar]
  76. Liu M, Li X, Xie Y, Bi D, Sun J. Iceberg 2.0: an updated database of bacterial integrative and conjugative elements. Nucleic Acids Res. 2019; 47:D660–D665
    [Google Scholar]
  77. Wozniak RA, Waldor MK. A toxin-antitoxin system promotes the maintenance of an integrative conjugative element. PLoS Genet 2009; 5:e1000439
    [Google Scholar]
  78. Guglielmini J, Quintais L, Garcillán-Barcia MP, de la Cruz F, Rocha EP. The repertoire of ice in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 2011; 7:e1002222
    [Google Scholar]
  79. Hülter N, Ilhan J, Wein T, Kadibalban AS, Hammerschmidt K. An evolutionary perspective on plasmid lifestyle modes. Curr Opin Microbiol 2017; 38:74–80
    [Google Scholar]
  80. Cury J, Oliveira PH, de la Cruz F, Rocha EPC. Host range and genetic plasticity explain the coexistence of integrative and extrachromosomal mobile genetic Elements [published correction appears in Mol Biol Evol. 2018 Nov 1;35(11):2850]. Mol Biol Evol. 2018; 35:2230–2239
    [Google Scholar]
  81. Pesesky MW, Tilley R, Beck DAC. Mosaic plasmids are abundant and unevenly distributed across prokaryotic taxa. Plasmid 2019; 102:10–18
    [Google Scholar]
  82. diCenzo G, Milunovic B, Cheng J, Finan TM. The tRNAarg gene and engA are essential genes on the 1.7-Mb pSymB megaplasmid of Sinorhizobium meliloti and were translocated together from the chromosome in an ancestral strain. J Bacteriol 2013; 195:202–212
    [Google Scholar]
  83. Tran TT, Belahbib H, Bonnefoy V, Talla E. A comprehensive tRNA genomic survey unravels the evolutionary history of tRNA arrays in prokaryotes. Genome Biol Evol 2015; 8:282–295
    [Google Scholar]
  84. Morgado SM, Vicente ACP. Beyond the limits: tRNA array units in Mycobacterium genomes. Front Microbiol 2018; 9:1042
    [Google Scholar]
  85. Williams KP. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res 2002; 30:866–875
    [Google Scholar]
  86. Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae . J Antimicrob Chemother 2018; 73:1121–1137
    [Google Scholar]
  87. Koraimann G. Spread and persistence of virulence and antibiotic resistance genes: a ride on the F plasmid conjugation module. EcoSal Plus 2018; 8:
    [Google Scholar]
  88. Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol 2019; 65:34–44
    [Google Scholar]
  89. Graf FE, Palm M, Warringer J, Farewell A. Inhibiting conjugation as a tool in the fight against antibiotic resistance. Drug Dev Res 2019; 80:19–23
    [Google Scholar]
  90. Smalla K, Jechalke S, Top EM, Detection P. Characterization, and ecology. Microbiol Spectr 2015; 3:
    [Google Scholar]
  91. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P. Card 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573
    [Google Scholar]
  92. Radhouani H, Silva N, Poeta P, Torres C, Correia S. Potential impact of antimicrobial resistance in wildlife, environment and human health. Front Microbiol. 2014; 5:23
    [Google Scholar]
  93. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 2010; 8:251–259
    [Google Scholar]
  94. Ly A, Liu J. Mycobacterial virulence factors: surface-exposed lipids and secreted proteins. Int J Mol Sci 2020; 21:3985
    [Google Scholar]
  95. Tinaztepe E, Wei JR, Raynowska J, Portal-Celhay C, Thompson V. Role of metal-dependent regulation of ESX-3 secretion in intracellular survival of Mycobacterium tuberculosis. Infect Immun 2016; 84:2255–2263
    [Google Scholar]
  96. Bosserman RE, Champion PA. Esx systems and the mycobacterial cell envelope: what’s the connection?. J Bacteriol 2017; 199:e00131–17
    [Google Scholar]
  97. Fishbein S, van Wyk N, Warren RM, Sampson SL. Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Mol Microbiol 2015; 96:901–916
    [Google Scholar]
  98. Nakanaga K, Ogura Y, Toyoda A, Yoshida M, Fukano H. Naturally occurring a loss of a giant plasmid from Mycobacterium ulcerans subsp. shinshuense makes it non-pathogenic. Sci Rep 2018; 8:8218
    [Google Scholar]
  99. Fan X, Xie L, Li W, Xie J. Prophage-like elements present in Mycobacterium genomes. BMC Genomics 2014; 15:243
    [Google Scholar]
  100. Sassi M, Gouret P, Chabrol O, Pontarotti P, Drancourt M. Mycobacteriophage-drived diversification of Mycobacterium abscessus . Biol Direct. 2014; 9:19
    [Google Scholar]
  101. Phelippeau M, Asmar S, Osman DA, Sassi M, Robert C et al. "Mycobacterium massilipolynesiensis" sp. nov., a rapidly-growing Mycobacterium of medical interest related to Mycobacterium phlei . Sci Rep 2017; 7:40443 [View Article]
    [Google Scholar]
  102. Bobay LM, Touchon M, Rocha EP. Pervasive domestication of defective prophages by bacteria. Proc Natl Acad Sci U S A 2014; 111:12127–12132 [View Article][PubMed]
    [Google Scholar]
  103. Smith BT, Walker GC. Mutagenesis and more: umuDC and the Escherichia coli SOS response. Genetics 1998; 148:1599–1610[PubMed]
    [Google Scholar]
  104. Tom EF, Molineux IJ, Paff ML, Bull JJ. Experimental evolution of UV resistance in a phage. PeerJ 2018; 6:e5190 [View Article][PubMed]
    [Google Scholar]
  105. Ma L, Green SI, Trautner BW, Ramig RF, Maresso AW. Metals enhance the killing of bacteria by bacteriophage in human blood. Sci Rep 2018; 8:2326 [View Article][PubMed]
    [Google Scholar]
  106. Janssen BD, Hayes CS. The tmRNA ribosome-rescue system. Adv Protein Chem Struct Biol 2012; 86:151–191 [View Article][PubMed]
    [Google Scholar]
  107. Weinberg Z, Regulski EE, Hammond MC, Barrick JE, Yao Z et al. The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA 2008; 14:822–828 [View Article][PubMed]
    [Google Scholar]
  108. Mazauric MH, Licznar P, Prère MF, Canal I, Fayet O. Apical loop-internal loop RNA pseudoknots: a new type of stimulator of -1 translational frameshifting in bacteria. J Biol Chem 2008; 283:20421–20432 [View Article][PubMed]
    [Google Scholar]
  109. Weinberg Z, Perreault J, Meyer MM, Breaker RR. Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis. Nature 2009; 462:656–659 [View Article][PubMed]
    [Google Scholar]
  110. Delesalle VA, Tanke NT, Vill AC, Krukonis GP. Testing hypotheses for the presence of tRNA genes in mycobacteriophage genomes. Bacteriophage 2016; 6:e1219441 [View Article][PubMed]
    [Google Scholar]
  111. Morgado S, Vicente AC. Global In-Silico scenario of tRNA genes and their organization in virus genomes. Viruses 2019; 11:180 [View Article][PubMed]
    [Google Scholar]
  112. Colavecchio A, Cadieux B, Lo A, Goodridge LD. Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family - A review. Front Microbiol 2017; 8:1108 [View Article][PubMed]
    [Google Scholar]
  113. Wendling CC, Refardt D, Hall AR. Fitness benefits to bacteria of carrying prophages and prophage-encoded antibiotic-resistance genes peak in different environments. Evolution 202003.13.990044 [View Article][PubMed]
    [Google Scholar]
  114. Quan S, Venter H, Dabbs ER. Ribosylative inactivation of rifampin by Mycobacterium smegmatis is a principal contributor to its low susceptibility to this antibiotic. Antimicrob Agents Chemother 1997; 41:2456–2460 [View Article][PubMed]
    [Google Scholar]
  115. Baysarowich J, Koteva K, Hughes DW, Ejim L, Griffiths E et al. Rifamycin antibiotic resistance by ADP-ribosylation: structure and diversity of Arr. Proc Natl Acad Sci U S A 2008; 105:4886–4891 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000533
Loading
/content/journal/mgen/10.1099/mgen.0.000533
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error