1887

Abstract

is a bacterium with a broad ecology spanning disease in humans, animals and plants, but also encompassing multiple beneficial interactions. It is a plant pathogen, a toxin-producing food-poisoning agent, and causes lung infections in people with cystic fibrosis (CF). Contrasting beneficial traits include antifungal production exploited by insects to protect their eggs, plant protective abilities and antibiotic biosynthesis. We explored the genomic diversity and specialized metabolic potential of 206 strains, phylogenomically defining 5 clades. Historical disease pathovars (pv.) pv. and pv. were distinct, while pv. and pv. were indistinguishable; soft-rot disease and CF infection were conserved across all pathovars. Biosynthetic gene clusters (BGCs) for toxoflavin, caryoynencin and enacyloxin were dispersed across , but bongkrekic acid and gladiolin production were clade-specific. Strikingly, 13 % of CF infection strains characterized were bongkrekic acid-positive, uniquely linking this food-poisoning toxin to this aspect of disease. Mapping the population biology and metabolite production of has shed light on its diverse ecology, and by demonstrating that the antibiotic trimethoprim suppresses bongkrekic acid production, a potential therapeutic strategy to minimize poisoning risk in CF has been identified.

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/R012121/1)
    • Principle Award Recipient: MatthewJenner
  • Biotechnology and Biological Sciences Research Council (Award BB/M017982/1)
    • Principle Award Recipient: GregoryL. Challis
  • Medical Research Council (Award MR/L015080/1)
    • Principle Award Recipient: ThomasR. Connor
  • Biotechnology and Biological Sciences Research Council (Award BB/L023342/1)
    • Principle Award Recipient: GregoryL. Challis
  • Biotechnology and Biological Sciences Research Council (Award BB/L021692/1)
    • Principle Award Recipient: EshwarMahenthiralingam
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000515
2021-01-18
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/1/mgen000515.html?itemId=/content/journal/mgen/10.1099/mgen.0.000515&mimeType=html&fmt=ahah

References

  1. Depoorter E, Bull MJ, Peeters C, Coenye T, Vandamme P et al. Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl Microbiol Biotechnol 2016; 100:5215–5229 [View Article][PubMed]
    [Google Scholar]
  2. Lipuma JJ. The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 2010; 23:299–323 [View Article][PubMed]
    [Google Scholar]
  3. Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK et al. Common features of environmental and potentially beneficial plant-associated Burkholderia . Microb Ecol 2012; 63:249–266 [View Article][PubMed]
    [Google Scholar]
  4. Estrada-de Los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET et al. Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae . Genes 2018; 9:389 01 08 2018 [View Article][PubMed]
    [Google Scholar]
  5. Jones AM, Stanbridge TN, Isalska BJ, Dodd ME, Webb AK. Burkholderia gladioli: recurrent abscesses in a patient with cystic fibrosis. J Infect 2001; 42:69–71 [View Article]
    [Google Scholar]
  6. Murray S, Charbeneau J, Marshall BC, LiPuma JJ. Impact of burkholderia infection on lung transplantation in cystic fibrosis. Am J Respir Crit Care Med 2008; 178:363–371 [View Article][PubMed]
    [Google Scholar]
  7. Coenye T, Holmes B, Kersters K, Govan JR, Vandamme P. Burkholderia cocovenenans (van Damme et al. 1960) Gillis et al. 1995 and Burkholderia vandii Urakami et al. 1994 are junior synonyms of Burkholderia gladioli (Severini 1913) Yabuuchi et al. 1993 and Burkholderia plantarii (Azegami et al. 1987) Urakami et al. 1994, respectively. Int J Syst Bacteriol 1999; 49 Pt 1:37–42 [View Article][PubMed]
    [Google Scholar]
  8. Hildebrand DC, Palleroni NJ, Doudoroff M. Synonymy of Pseudomonas gladioli Severini 1913 and Pseudomonas marginata (McCulloch 1921) Stapp 1928. Int J Syst Bacteriol 1973; 23:433–437 [View Article]
    [Google Scholar]
  9. Coenye T, Gillis M, Vandamme P. Pseudomonas antimicrobica Attafuah and Bradbury 1990 is a junior synonym of Burkholderia gladioli (Severini 1913) Yabuuchi et al. 1993. Int J Syst Evol Microbiol 2000; 50 Pt 6:2135–2139 [View Article][PubMed]
    [Google Scholar]
  10. Gill WM, Tsuneda A. The interaction of the soft rot bacterium Pseudomonas gladioli pv. agaricicola with Japanese cultivated mushrooms. Can J Microbiol 1997; 43:639–648 [View Article]
    [Google Scholar]
  11. Wright PJ, Clark RG, Hale CN. A storage soft rot of New Zealand onions caused by Pseudomonas gladioli Pv alliicola . New Zeal J Crop Hort 1993; 21:225–227 [View Article]
    [Google Scholar]
  12. Nandakumar R, Shahjahan AKM, Yuan XL, Dickstein ER, Groth DE et al. Burkholderia glumae and B. gladioli Cause Bacterial Panicle Blight in Rice in the Southern United States. Plant Dis 2009; 93:896–905 [View Article][PubMed]
    [Google Scholar]
  13. Jiao Z, Kawamura Y, Mishima N, Yang R, Li N et al. Need to differentiate lethal toxin-producing strains of Burkholderia gladioli, which cause severe food poisoning: description of B. gladioli pathovar cocovenenans and an emended description of B. gladioli . Microbiol Immunol 2003; 47:915–925 [View Article][PubMed]
    [Google Scholar]
  14. Moebius N, Ross C, Scherlach K, Rohm B, Roth M et al. Biosynthesis of the respiratory toxin bongkrekic acid in the pathogenic bacterium Burkholderia gladioli . Chem Biol 2012; 19:1164–1174 [View Article][PubMed]
    [Google Scholar]
  15. Kunakom S, Eustáquio AS. Burkholderia as a source of natural products. J Nat Prod 2019; 82:2018–2037 [View Article][PubMed]
    [Google Scholar]
  16. Lee J, Park J, Kim S, Park I, Seo Y-S. Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli . Mol Plant Pathol 2016; 17:65–76 [View Article][PubMed]
    [Google Scholar]
  17. Ross C, Opel V, Scherlach K, Hertweck C. Biosynthesis of antifungal and antibacterial polyketides by Burkholderia gladioli in coculture with Rhizopus microsporus . Mycoses 2014; 57 Suppl 3:48–55 [View Article][PubMed]
    [Google Scholar]
  18. Dose B, Niehs SP, Scherlach K, Flórez LV, Kaltenpoth M et al. Unexpected bacterial origin of the antibiotic icosalide: two-tailed depsipeptide assembly in multifarious Burkholderia symbionts. ACS Chem Biol 2018; 13:2414–2420 [View Article][PubMed]
    [Google Scholar]
  19. Jenner M, Jian X, Dashti Y, Masschelein J, Hobson C et al. An unusual Burkholderia gladioli double chain-initiating nonribosomal peptide synthetase assembles 'fungal' icosalide antibiotics. Chem Sci 2019; 10:5489–5494 [View Article][PubMed]
    [Google Scholar]
  20. Flórez LV, Scherlach K, Gaube P, Ross C, Sitte E et al. Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nat Commun 2017; 8:15172 [View Article][PubMed]
    [Google Scholar]
  21. Song L, Jenner M, Masschelein J, Jones C, Bull MJ et al. Discovery and biosynthesis of gladiolin: A Burkholderia gladioli Antibiotic with promising activity against Mycobacterium tuberculosis . J Am Chem Soc 2017; 139:7974–7981 [View Article][PubMed]
    [Google Scholar]
  22. Mullins AJ, Murray JAH, Bull MJ, Jenner M, Jones C et al. Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria . Nat Microbiol 2019; 4:996–1005 [View Article][PubMed]
    [Google Scholar]
  23. Seo Y-S, Lim J, Choi B-S, Kim H, Goo E et al. Complete genome sequence of Burkholderia gladioli BSR3. J Bacteriol 2011; 193:3149 [View Article][PubMed]
    [Google Scholar]
  24. Johnson SL, Bishop-Lilly KA, Ladner JT, Daligault HE, Davenport KW et al. Complete genome sequences for 59 Burkholderia isolates, both pathogenic and near neighbor. Genome Announc 2015; 3:e00159-15 30 04 2015 [View Article][PubMed]
    [Google Scholar]
  25. Mahenthiralingam E, Song L, Sass A, White J, Wilmot C et al. Enacyloxins are products of an unusual hybrid modular polyketide synthase encoded by a cryptic Burkholderia ambifaria Genomic Island. Chem Biol 2011; 18:665–677 [View Article][PubMed]
    [Google Scholar]
  26. Hareland WA, Crawford RL, Chapman PJ, Dagley S. Metabolic function and properties of 4-hydroxyphenylacetic acid 1-hydroxylase from Pseudomonas acidovorans . J Bacteriol 1975; 121:272–285 [View Article][PubMed]
    [Google Scholar]
  27. Kirchner S, Fothergill JL, Wright EA, James CE, Mowat E et al. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J Vis Exp 2012; 64:e3857 [View Article][PubMed]
    [Google Scholar]
  28. Okada BK, Wu Y, Mao D, Bushin LB, Seyedsayamdost MR. Mapping the Trimethoprim-induced secondary metabolome of Burkholderia thailandensis . ACS Chem Biol 2016; 11:2124–2130 [View Article][PubMed]
    [Google Scholar]
  29. Connor TR, Loman NJ, Thompson S, Smith A, Southgate J et al. CLIMB (the cloud infrastructure for microbial bioinformatics): an online resource for the medical microbiology community. Microb Genom 2016; 2:e000086 [View Article][PubMed]
    [Google Scholar]
  30. Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011; 27:2957–2963 [View Article][PubMed]
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  32. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article][PubMed]
    [Google Scholar]
  33. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  34. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007; 23:673–679 [View Article][PubMed]
    [Google Scholar]
  35. Galardini M, Biondi EG, Bazzicalupo M, Mengoni A. CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes. Source Code Biol Med 2011; 6:11 [View Article][PubMed]
    [Google Scholar]
  36. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Analytical Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  37. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article][PubMed]
    [Google Scholar]
  38. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article][PubMed]
    [Google Scholar]
  39. Jolley KA, Maiden MCJ. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article][PubMed]
    [Google Scholar]
  40. Weber T, Blin K, Duddela S, Krug D, Kim HU et al. antiSMASH 3.0-A comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 2015; 43:W237–W243 [View Article][PubMed]
    [Google Scholar]
  41. Blin K, Medema MH, Kottmann R, Lee SY, Weber T. The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 2017; 45:D555–D559 [View Article][PubMed]
    [Google Scholar]
  42. Roy Chowdhury P, Heinemann JA. The general secretory pathway of Burkholderia gladioli pv. agaricicola BG164R is necessary for cavity disease in white button mushrooms. Appl Environ Microbiol 2006; 72:3558–3565 [View Article][PubMed]
    [Google Scholar]
  43. Jacobs JL, Fasi AC, Ramette A, Smith JJ, Hammerschmidt R et al. Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil. Appl Environ Microbiol 2008; 74:3121–3129 [View Article][PubMed]
    [Google Scholar]
  44. Webster G, Jones C, Mullins AJ, Mahenthiralingam E. A rapid screening method for the detection of specialised metabolites from bacteria: induction and suppression of metabolites from Burkholderia species. J Microbiol Methods 2020; 178:106057 [View Article][PubMed]
    [Google Scholar]
  45. Flannagan RS, Aubert D, Kooi C, Sokol PA, Valvano MA. Burkholderia cenocepacia requires a periplasmic HtrA protease for growth under thermal and osmotic stress and for survival in vivo. Infect Immun 2007; 75:1679–1689 [View Article][PubMed]
    [Google Scholar]
  46. Mullins AJ, Jones C, Bull MJ, Webster G, Parkhill J et al. Genomic assemblies of members of Burkholderia and related genera as a resource for natural product discovery. Microbiol Resour Announc 2020; 9:e00485–20 [View Article][PubMed]
    [Google Scholar]
  47. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  48. Ross C, Scherlach K, Kloss F, Hertweck C. The molecular basis of conjugated polyyne biosynthesis in phytopathogenic bacteria. Angew Chem Int Ed Engl 2014; 53:7794–7798 [View Article][PubMed]
    [Google Scholar]
  49. Gudo ES, Cook K, Kasper AM, Vergara A, Salomão C et al. Description of a mass poisoning in a rural district in Mozambique: the first documented bongkrekic acid poisoning in Africa. Clin Infect Dis 2018; 66:1400–1406 [View Article][PubMed]
    [Google Scholar]
  50. Seyedsayamdost MR. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc Natl Acad Sci U S A 2014; 111:7266–7271 [View Article][PubMed]
    [Google Scholar]
  51. Quon BS, Reid JD, Wong P, Wilcox PG, Javer A et al. Burkholderia gladioli - a predictor of poor outcome in cystic fibrosis patients who receive lung transplants? A case of locally invasive rhinosinusitis and persistent bacteremia in a 36-year-old lung transplant recipient with cystic fibrosis. Can Respir J 2011; 18:e64–e65 [View Article][PubMed]
    [Google Scholar]
  52. Lieberman TD, Michel J-B, Aingaran M, Potter-Bynoe G, Roux D et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet 2011; 43:1275–1280 [View Article][PubMed]
    [Google Scholar]
  53. Chewapreecha C, Holden MTG, Vehkala M, Välimäki N, Yang Z et al. Global and regional dissemination and evolution of Burkholderia pseudomallei . Nat Microbiol 2017; 2:16263 [View Article][PubMed]
    [Google Scholar]
  54. Frangolias DD, Mahenthiralingam E, Rae S, Raboud JM, Davidson AGF et al. Burkholderia cepacia in cystic fibrosis. Am J Respir Crit Care Med 1999; 160:1572–1577 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000515
Loading
/content/journal/mgen/10.1099/mgen.0.000515
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error