1887

Abstract

The Liverpool epidemic strain (LES) is an important transmissible clonal lineage of that chronically infects the lungs of people with cystic fibrosis (CF). Previous studies have focused on the genomics of the LES in a limited number of isolates, mostly from one CF centre in the UK, and from studies highlighting identification of the LES in Canada. Here we significantly extend the current LES genome database by genome sequencing 91 isolates from multiple CF centres across the UK, and we describe the comparative genomics of this large collection of LES isolates from the UK and Canada. Phylogenetic analysis revealed that the 145 LES genomes analysed formed a distinct clonal lineage when compared with the wider population. Notably, the isolates formed two clades: one associated with isolates from Canada, and the other associated with UK isolates. Further analysis of the UK LES isolates revealed clustering by clinic geography. Where isolates clustered closely together, the association was often supported by clinical data linking isolates or patients. When compared with the earliest known isolate, LESB58 (from 1988), many UK LES isolates shared common loss-of-function mutations, such as in genes and . Other loss-of-function mutations identified in previous studies as common adaptations during CF chronic lung infections were also identified in multiple LES isolates. Analysis of the LES accessory genome (including genomic islands and prophages) revealed variations in the carriage of large genomic regions, with some evidence for shared genomic island/prophage complement according to clinic location. Our study reveals divergence and adaptation during the spread of the LES, within the UK and between continents.

Funding
This study was supported by the:
  • Cystic Fibrosis Trust (Award RS34)
    • Principle Award Recipient: CraigWinstanley
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000511
2021-03-15
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/3/mgen000511.html?itemId=/content/journal/mgen/10.1099/mgen.0.000511&mimeType=html&fmt=ahah

References

  1. Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JAJ et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 2020
    [Google Scholar]
  2. Fothergill JL, Walshaw MJ, Winstanley C. Transmissible strains of Pseudomonas aeruginosa in cystic fibrosis lung infections. Eur Respir J 2012; 40:227–238 [View Article][PubMed]
    [Google Scholar]
  3. Parkins MD, Somayaji R, Waters VJ. Epidemiology, Biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin Microbiol Rev 2018; 31: [View Article][PubMed]
    [Google Scholar]
  4. Ashish A, Shaw M, Winstanley C, Humphreys L, Walshaw MJ. Halting the spread of epidemic Pseudomonas aeruginosa in an adult cystic fibrosis centre: a prospective cohort study. JRSM Short Rep 2013; 4:1
    [Google Scholar]
  5. Cheng K, Smyth RL, Govan JRW, Doherty C, Winstanley C et al. Spread of ?-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. The Lancet 1996; 348:639–642
    [Google Scholar]
  6. Martin K, Baddal B, Mustafa N, Perry C, Underwood A et al. Clusters of genetically similar isolates of Pseudomonas aeruginosa from multiple hospitals in the UK. J Med Microbiol 2013; 62:988–1000
    [Google Scholar]
  7. Aaron SD, Vandemheen KL, Ramotar K, Giesbrecht-Lewis T, Tullis E et al. Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. JAMA J Am Med Assoc 2010; 304:2145–2153
    [Google Scholar]
  8. Dettman JR, Rodrigue N, Aaron SD, Kassen R. Evolutionary genomics of epidemic and nonepidemic strains of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2013; 110:21065–21070 [View Article][PubMed]
    [Google Scholar]
  9. McCallum SJ, Corkill J, Gallagher M, Ledson MJ, Hart CA et al. Superinfection with a transmissible strain of Pseudomonas aeruginosa in adults with cystic fibrosis chronically colonised by P aeruginosa . Lancet 2001; 358:558–560 [View Article][PubMed]
    [Google Scholar]
  10. Salunkhe P, Smart CHM, Alun JW, Panagea S, Walshaw MJ et al. A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance a cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance; 2005
  11. Fothergill JL, Panagea S, Hart CA, Walshaw MJ, Pitt TL et al. Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiol 2007; 7:45
    [Google Scholar]
  12. Al-Aloul M. Increased morbidity associated with chronic infection by an epidemic Pseudomonas aeruginosa strain in CF patients. Thorax 2004 Apr 1; 59:334–336
    [Google Scholar]
  13. Ashish A, Shaw M, Winstanley C, Ledson MJ, Walshaw MJ. Increasing resistance of the Liverpool Epidemic Strain (LES) of Pseudomonas aeruginosa (Psa) to antibiotics in cystic fibrosis (CF)-A cause for concern?. J Cyst Fibros 2012; 11:173–179
    [Google Scholar]
  14. McCallum S, Gallagher M, Corkill J. Spread of an epidemic Pseudomonas aeruginosa strain from a patient with cystic fibrosis (CF) to non-CF relatives. Thorax 2000; 2002:559–561
    [Google Scholar]
  15. Mohan K, Fothergill JL, Storrar J, Ledson MJ, Winstanley C et al. Transmission of Pseudomonas aeruginosa epidemic strain from a patient with cystic fibrosis to a PET cat. Thorax 2008; 63:839–840
    [Google Scholar]
  16. Mohan K, Lakshman V, Fothergill JL, Ledson MJ, Winstanley C et al. Empyema due to a highly transmissible Pseudomonas aeruginosa strain in an adult cystic fibrosis patient. J Med Microbiol 2010; 59:614–616
    [Google Scholar]
  17. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000; 406:959–964 [View Article]
    [Google Scholar]
  18. Lee DG, Urbach JM, Wu G, Feinbaum RL. Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 2006; 7:R90
    [Google Scholar]
  19. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM et al. Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci U S A 2008 Feb 26; 105:3100–3105
    [Google Scholar]
  20. Roy PH, Tetu SG, Larouche A, Elbourne L, Tremblay S et al. Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One 2010; 5:e8842
    [Google Scholar]
  21. Stewart L, Ford A, Sangal V, Jeukens J, Boyle B et al. Draft genomes of 12 host-adapted and environmental isolates of Pseudomonas aeruginosa and their positions in the core genome phylogeny. Pathog Dis 2014; 71:20–25
    [Google Scholar]
  22. Freschi L, Jeukens J, Kukavica-Ibrulj I, Boyle B, Dupont MJ et al. Clinical utilization of genomics data produced by the International Pseudomonas aeruginosa Consortium. Front Microbiol 2015; 6:1–8
    [Google Scholar]
  23. Kos VN, Déraspe M, McLaughlin RE, Whiteaker JD, Roy PH et al. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob Agents Chemother 2015; 59:427–436
    [Google Scholar]
  24. Jeukens J, Emond-Rheault J-G, Freschi L, Kukavica-Ibrulj I, Levesque RC. Major release of 161 whole-genome sequences from the International Pseudomonas Consortium database. Microbiol Resour Announc 2019; 8:e00013–00019 [View Article][PubMed]
    [Google Scholar]
  25. Fischer S, Klockgether J, Morán Losada P, Chouvarine P, Cramer N et al. Intraclonal genome diversity of the major Pseudomonas aeruginosa clones C and PA14. Environ Microbiol Rep 2016; 8:227–234
    [Google Scholar]
  26. Winstanley C, Langille MGI, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C et al. Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool epidemic strain of Pseudomonas aeruginosa . Genome 2009; 1:12–23
    [Google Scholar]
  27. Lemieux AA, Jeukens J, Kukavica-Ibrulj I, Fothergill JL, Boyle B et al. Genes required for free phage production are essential for Pseudomonas aeruginosa chronic lung infections. J Infect Dis 2016; 213:395–402
    [Google Scholar]
  28. James CE, Davies E V, Fothergill JL, Walshaw MJ, Beale CM et al. Lytic activity by temperate phages of Pseudomonas aeruginosa in long-term cystic fibrosis chronic lung infections. Isme J 2015; 9:1391–1398
    [Google Scholar]
  29. Jeukens J, Boyle B, Kukavica-Ibrulj I, Ouellet MM, Aaron SD et al. Comparative genomics of isolates of a Pseudomonas aeruginosa epidemic strain associated with chronic lung infections of cystic fibrosis patients. PLoS One 2014; 9:e87611
    [Google Scholar]
  30. Williams D, Evans B, Haldenby S, Walshaw MJ, Brockhurst MA et al. Divergent, coexisting Pseudomonas aeruginosa lineages in chronic cystic fibrosis lung infections. Am J Respir Crit Care Med 2015 Jan 15; 191:775–785
    [Google Scholar]
  31. Williams D, Fothergill JL, Evans B, Caples J, Haldenby S et al. Transmission and lineage displacement drive rapid population genomic flux in cystic fibrosis airway infections of a Pseudomonas aeruginosa epidemic strain. Microb Genomics 2018
    [Google Scholar]
  32. Williams D, Paterson S, Brockhurst MA, Winstanley C. Refined analyses suggest that recombination is a minor source of genomic diversity in Pseudomonas aeruginosa chronic cystic fibrosis infections. Microb Genomics [Internet] 2016; 2:
    [Google Scholar]
  33. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011; 17:10 [View Article]
    [Google Scholar]
  34. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from illumina MiSeq data. Bioinformatics 2015 Feb 15; 31:587–589
    [Google Scholar]
  35. Assefa S, Keane TM, Otto TD, Newbold C, Berriman M. ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics 2009; 25:1968–1969 [View Article][PubMed]
    [Google Scholar]
  36. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069
    [Google Scholar]
  37. Winsor GL, DKW L, Fleming L, Lo R, Whiteside MD et al. Pseudomonas genome database: improved comparative analysis and population genomics capability for Pseudomonas genomes . Nucleic Acids Res 2011; 39:
    [Google Scholar]
  38. Jolley KA, Maiden MCJ. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595
    [Google Scholar]
  39. Laing C, Buchanan C, Taboada EN, Zhang Y, Kropinski A et al. Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions. BMC Bioinformatics 2010; 11:461
    [Google Scholar]
  40. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994 Nov 11; 22:4673–4680
    [Google Scholar]
  41. Roure B, Rodriguez-Ezpeleta N, Philippe H. SCaFoS: a tool for selection, concatenation and fusion of sequences for phylogenomics. BMC Evol Biol 2007; 7 Suppl 1:S2 [View Article][PubMed]
    [Google Scholar]
  42. Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018
    [Google Scholar]
  43. Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274
    [Google Scholar]
  44. Rahme L, Stevens E, Wolfort S. Common virulence factors for bacterial pathogenicity in plants and animals. Science (80-) 1995 Jun 30; 268:1899–1902
    [Google Scholar]
  45. Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017
    [Google Scholar]
  46. Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol 2015
    [Google Scholar]
  47. Letunic I, Bork P. Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007 Jan 1; 23:127–128
    [Google Scholar]
  48. Zhou Z, Alikhan N-F, Sergeant MJ, Luhmann N, Vaz C et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 2018gr.232397.117
    [Google Scholar]
  49. Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng 2007
    [Google Scholar]
  50. McKinney W, Team PD. Pandas - Powerful python data analysis toolkit; 2015
  51. Klein B, Klein B. NumPy. Einführung in Python 3 2014
    [Google Scholar]
  52. Kluyver T, Ragan-kelley B, Pérez F, Granger B, Bussonnier M. Jupyter Notebooks-A Publishing Format for Reproducible Computational Workflows Positioning and Power in Academic Publishing: Players, Agents and Agendas; 2016
    [Google Scholar]
  53. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693
    [Google Scholar]
  54. Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 2016; 17:
    [Google Scholar]
  55. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. blast ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011; 12:
    [Google Scholar]
  56. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. blast+: architecture and applications. BMC Bioinformatics 2009; 10:421
    [Google Scholar]
  57. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article][PubMed]
    [Google Scholar]
  58. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article]
    [Google Scholar]
  59. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20:1297–1303 [View Article]
    [Google Scholar]
  60. Danecek P, Auton A, Abecasis G, Albers CA, Banks E et al. The variant call format and VCFtools. Bioinformatics 2011; 27:2156–2158 [View Article][PubMed]
    [Google Scholar]
  61. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 2012; 6:80–92 [View Article]
    [Google Scholar]
  62. Mohan K, Fothergill JL, Storrar J, Ledson MJ, Winstanley C et al. Transmission of Pseudomonas aeruginosa epidemic strain from a patient with cystic fibrosis to a PET cat. Thorax 2008; 63:839–840 [View Article][PubMed]
    [Google Scholar]
  63. Freschi L, Vincent AT, Jeukens J, Emond-Rheault JG, Kukavica-Ibrulj I et al. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol Evol 2019; 11:109–120
    [Google Scholar]
  64. Darch SE, McNally A, Harrison F, Corander J, Barr HL et al. Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection. Sci Rep 2015; 5:7649 [View Article][PubMed]
    [Google Scholar]
  65. Montanari S, Oliver A, Salerno P, Mena A, Bertoni G et al. Biological cost of hypermutation in Pseudomonas aeruginosa strains from patients with cystic fibrosis; 2007; 1531445–1454
  66. Davies E V, James CE, Kukavica-Ibrulj I, Levesque RC, Brockhurst MA et al. Temperate phages enhance pathogen fitness in chronic lung infection. Isme J. 2016
    [Google Scholar]
  67. Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017; 7:39 [View Article][PubMed]
    [Google Scholar]
  68. Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 2002; 109:317–325
    [Google Scholar]
  69. Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 2016; 24:327–337 [View Article]
    [Google Scholar]
  70. Maunders E, Welch M. Matrix exopolysaccharides; the sticky side of biofilm formation. FEMS Microbiology Letters. 2017
    [Google Scholar]
  71. Anthony M, Rose B, Pegler MB, Elkins M, Service H et al. Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J Clin Microbiol 2002; 40:2772–2778
    [Google Scholar]
  72. Mathee K, Ciofu O, Sternberg C, Lindum PW, Campbell JIA et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 1999; 145:1349–1357
    [Google Scholar]
  73. Fothergill JL, Neill DR, Loman N, Winstanley C, Kadioglu A. Pseudomonas aeruginosa adaptation in the nasopharyngeal reservoir leads to migration and persistence in the lungs. Nat Commun. 2014
    [Google Scholar]
  74. Marvig RL, Damkiær S, Hossein Khademi SM, Markussen TM, Molin S et al. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. mBio 2014; 5:
    [Google Scholar]
  75. Konings AF, Martin LW, Sharples KJ, Roddam LF, Latham R et al. Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect Immun 2013; 81:2697–2704 [View Article][PubMed]
    [Google Scholar]
  76. Hilliam Y, Moore MP, Lamont IL, Bilton D, Haworth CS et al. Pseudomonas aeruginosa adaptation and diversification in the non-cystic fibrosis bronchiectasis lung. Eur Respir J 2017; 49:
    [Google Scholar]
  77. Bricio-Moreno L, Sheridan VH, Goodhead I, Armstrong S, Wong JKL et al. Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa . Nat Commun 2018
    [Google Scholar]
  78. Li H, Luo Y-F, Williams BJ, Blackwell TS, Xie C-M. Structure and function of oprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies. Int J Med Microbiol 2012; 302:63–68 [View Article][PubMed]
    [Google Scholar]
  79. Salunkhe P, Smart CHM, Morgan JAW, Panagea S, Walshaw MJ et al. A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol 2005; 187:4908–4920 [View Article]
    [Google Scholar]
  80. Lamers RP, Nguyen UT, Nguyen Y, Buensuceso RNC, Burrows LL. Loss of membrane‐bound lytic transglycosylases increases outer membrane permeability and β ‐lactam sensitivity in Pseudomonas aeruginosa . Microbiologyopen 2015; 4:879–895 [View Article]
    [Google Scholar]
  81. Castañeda-García A, Rodríguez-Rojas A, Guelfo JR, Blázquez J. The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa. J Bacteriol [Internet] 2009 Nov 4; 191:6968–6974
    [Google Scholar]
  82. Tsutsumi Y, Tomita H, Tanimoto K. Identification of novel genes responsible for overexpression of ampC in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 2013; 57:5987–5993 [View Article][PubMed]
    [Google Scholar]
  83. Hirakata Y, Srikumar R, Poole K, Gotoh N, Suematsu T et al. Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med. 2002
    [Google Scholar]
  84. Aaron SD, Vandemheen KL, Ramotar K, Giesbrecht-Lewis T, Tullis E et al. Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. JAMA - J Am Med Assoc 2010; 304:2145–2153
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000511
Loading
/content/journal/mgen/10.1099/mgen.0.000511
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error