1887

Abstract

is a genus of whose members include plant pathogens, insect pathogens and endosymbionts of animals. phenotypes have been repeatedly observed to be spontaneously lost in cultures, and several studies have documented a high genomic turnover in symbionts and plant pathogens. These observations suggest that evolves quickly in comparison to other insect symbionts. Here, we systematically assess evolutionary rates and patterns of , a natural symbiont of . We analysed genomic evolution of Hy within flies, and Mel within culture over several years. We observed that substitution rates are among the highest reported for any bacteria, and around two orders of magnitude higher compared with other inherited arthropod endosymbionts. The absence of mismatch repair loci and is conserved across , and likely contributes to elevated substitution rates. Further, the closely related strains Mel and Hy (>99.5 % sequence identity in shared loci) show extensive structural genomic differences, which potentially indicates a higher degree of host adaptation in Hy, a protective symbiont of . Finally, comparison across diverse lineages confirms previous reports of dynamic evolution of toxins, and identifies loci similar to the male-killing toxin Spaid in several lineages and other endosymbionts. Overall, our results highlight the peculiar nature of genome evolution, which may explain unusual features of its evolutionary ecology.

Funding
This study was supported by the:
  • European Molecular Biology Organization (Award ALTF 48-2015)
    • Principle Award Recipient: MichaelGerth
  • H2020 Marie Skłodowska-Curie Actions (Award 703379)
    • Principle Award Recipient: MichaelGerth
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000503
2021-02-16
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/2/mgen000503.html?itemId=/content/journal/mgen/10.1099/mgen.0.000503&mimeType=html&fmt=ahah

References

  1. McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 2013; 110:3229–3236 [View Article]
    [Google Scholar]
  2. Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc Biol Sci 2015; 282:20150249 [View Article][PubMed]
    [Google Scholar]
  3. Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L et al. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 2008; 6:27 [View Article]
    [Google Scholar]
  4. Douglas AE. The microbial dimension in insect nutritional ecology. Funct Ecol 2009; 23:38–47 [View Article]
    [Google Scholar]
  5. Drew GC, Frost CL, Hurst GDD. Reproductive parasitism and positive fitness effects of heritable microbes. eLS 2019; 2:a0028327
    [Google Scholar]
  6. Oliver KM, Smith AH, Russell JA. Defensive symbiosis in the real world - advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol 2014; 28:341–355 [View Article]
    [Google Scholar]
  7. Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA 2010; 107:769–774 [View Article]
    [Google Scholar]
  8. Teixeira L, Ferreira Á, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster . PLoS Biol 2008; 6:e1000002 [View Article]
    [Google Scholar]
  9. Dyson EA, Kamath MK, Hurst G. Wolbachia infection associated with all-female broods in Hypolimnas bolina (Lepidoptera: Nymphalidae): evidence for horizontal transmission of a butterfly male killer. Heredity 2002; 88:166–171 [View Article]
    [Google Scholar]
  10. Corbin C, Heyworth ER, Ferrari J, Hurst GDD. Heritable symbionts in a world of varying temperature. Heredity 2017; 118:10–20 [View Article]
    [Google Scholar]
  11. Hornett EA, Duplouy AMR, Davies N, Roderick GK, Wedell N et al. You can't keep a good parasite down: evolution of a male-killer suppressor uncovers cytoplasmic incompatibility. Evolution 2008; 62:1258–1263 [View Article][PubMed]
    [Google Scholar]
  12. Razin S. The genus Mycoplasma and related genera (class Mollicutes). In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. eds The Prokaryotes New York: Springer; 2006 pp 836–904
    [Google Scholar]
  13. Saglio PHM, Whitcomb RF. Diversity of wall-less prokaryotes in plant vascular tissue, fungi, and invertebrate animals. In Whitcomb RF, Tully JG. eds The Mycoplasmas New York: Academic Press; 1979 pp 1–36
    [Google Scholar]
  14. Poulson DF, Sakaguchi B. Nature of ‘sex-ratio’ agent in Drosophila . Science 1961; 133:1489–1490 [View Article]
    [Google Scholar]
  15. Haselkorn TS. The Spiroplasma heritable bacterial endosymbiont of Drosophila . Fly 2010; 4:80–87 [View Article]
    [Google Scholar]
  16. Gasparich GE. Spiroplasmas: evolution, adaptation and diversity. Front Biosci 2002; 7:d619–d640[PubMed]
    [Google Scholar]
  17. He L-S, Zhang P-W, Huang J-M, Zhu F-C, Danchin A et al. The enigmatic genome of an obligate ancient Spiroplasma symbiontholothurian. Appl Environ Microbiol 2018; 84:e01965-17 [View Article][PubMed]
    [Google Scholar]
  18. Duperron S, Pottier M-A, Léger N, Gaudron SM, Puillandre N et al. A tale of two chitons: is habitat specialisation linked to distinct associated bacterial communities?. FEMS Microbiol Ecol 2013; 83:552–567 [View Article]
    [Google Scholar]
  19. Anbutsu H, Fukatsu T. Spiroplasma as a model insect endosymbiont. Environ Microbiol Rep 2011; 3:144–153 [View Article]
    [Google Scholar]
  20. Ballinger MJ, Perlman SJ. The defensive Spiroplasma . Curr Opin Insect Sci 2019; 32:36–41 [View Article]
    [Google Scholar]
  21. Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ. Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 2010; 329:212–215 [View Article]
    [Google Scholar]
  22. Xie JL, Vilchez I, Mateos M. Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma . PLoS One 2010; 5:e12149 [View Article]
    [Google Scholar]
  23. Xie J, Butler S, Sanchez G, Mateos M. Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps. Heredity 2014; 112:399–408 [View Article]
    [Google Scholar]
  24. Hamilton PT, Leong JS, Koop BF, Perlman SJ. Transcriptional responses in a Drosophila defensive symbiosis. Mol Ecol 2014; 23:1558–1570 [View Article]
    [Google Scholar]
  25. Hamilton PT, Peng F, Boulanger MJ, Perlman SJ. A ribosome-inactivating protein in a Drosophila defensive symbiont. Proc Natl Acad Sci USA 2016; 113:350–355 [View Article][PubMed]
    [Google Scholar]
  26. Ballinger MJ, Perlman SJ. Generality of toxins in defensive symbiosis: ribosome-inactivating proteins and defense against parasitic wasps in Drosophila . PLoS Pathog 2017; 13:e1006431 [View Article]
    [Google Scholar]
  27. Paredes JC, Herren JK, Schüpfer F, Lemaitre B. The role of lipid competition for endosymbiont-mediated protection against parasitoid wasps in Drosophila . mBio 2016; 7:e01006-16 [View Article][PubMed]
    [Google Scholar]
  28. Sanada-Morimura S, Matsumura M, Noda H. Male killing caused by a Spiroplasma symbiont in the small brown planthopper, Laodelphax striatellus . J Hered 2013; 104:821–829 [View Article][PubMed]
    [Google Scholar]
  29. Tinsley MC, Majerus MEN. A new male-killing parasitism: Spiroplasma bacteria infect the ladybird beetle Anisosticta novemdecimpunctata (Coleoptera: Coccinellidae). Parasitology 2006; 132:757–765 [View Article]
    [Google Scholar]
  30. Hayashi M, Watanabe M, Yukuhiro F, Nomura M, Kageyama D. A nightmare for males? A maternally transmitted male-killing bacterium and strong female bias in a green lacewing population. PLoS One 2016; 11:e0155794 [View Article][PubMed]
    [Google Scholar]
  31. Jiggins FM, Hurst GDD, Jiggins CD, von der Schulenburg JHG, Majerus MEN. The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium. Parasitology 2000; 120:439–446 [View Article]
    [Google Scholar]
  32. Harumoto T, Lemaitre B. Male-killing toxin in a bacterial symbiont of Drosophila . Nature 2018; 557:252–255 [View Article]
    [Google Scholar]
  33. Yamada M-A, Nawa S, Watanabe TK. A mutant of SR organism (SRO) in Drosophila that does not kill the host males. Jpn J Genet 1982; 57:301–305 [View Article]
    [Google Scholar]
  34. Ebbert MA. The interaction phenotype in the Drosophila willistoni-Spiroplasma symbiosis. Evolution 1991; 45:971–988 [View Article]
    [Google Scholar]
  35. Masson F, Calderon‐Copete S, Schüpfer F, Vigneron A, Rommelaere S et al. Blind killing of both male and female Drosophila embryos by a natural variant of the endosymbiotic bacterium Spiroplasma poulsonii . Cell Microbiol 2020; 22:e13156 [View Article]
    [Google Scholar]
  36. Nakayama S, Parratt SR, Hutchence KJ, Lewis Z, Price TAR et al. Can maternally inherited endosymbionts adapt to a novel host? Direct costs of Spiroplasma infection, but not vertical transmission efficiency, evolve rapidly after horizontal transfer into D. melanogaster . Heredity 2015; 114:539–543 [View Article]
    [Google Scholar]
  37. Ye F, Melcher U, Rascoe JE, Fletcher J. Extensive chromosome aberrations in Spiroplasma citri strain BR3. Biochem Genet 1996; 34:269–286 [View Article][PubMed]
    [Google Scholar]
  38. Carle P, Saillard C, Duret S, Carrère N et al. Partial chromosome sequence of Spiroplasma citri reveals extensive viral invasion and important gene decay. Appl Environ Microbiol 2010; 76:3420–3426 [View Article]
    [Google Scholar]
  39. Ku C, Lo W-S, Chen L-L, Kuo C-H. Complete genomes of two dipteran-associated spiroplasmas provided insights into the origin, dynamics, and impacts of viral invasion in Spiroplasma . Genome Biol Evol 2013; 5:1151–1164 [View Article]
    [Google Scholar]
  40. Mouches C, Barroso G, Gadeau A, Bové JM. Characterization of two cryptic plasmids from Spiroplasma citri and occurrence of their DNA sequences among various spiroplasmas. Ann Inst Pasteur Microbiol 1984; 135:17–24 [View Article]
    [Google Scholar]
  41. Joshi BD, Berg M, Rogers J, Fletcher J, Melcher U. Sequence comparisons of plasmids pBJS-O of Spiroplasma citri and pSKU146 of S. kunkelii: implications for plasmid evolution. BMC Genomics 2005; 6:175 [View Article]
    [Google Scholar]
  42. Berho N, Duret S, Danet J-L, Renaudin J. Plasmid pSci6 from Spiroplasma citri GII-3 confers insect transmissibility to the non-transmissible strain S. citri 44. Microbiology 2006; 152:2703–2716 [View Article]
    [Google Scholar]
  43. Woese CR, Stackebrandt E, Ludwig W. What are mycoplasmas: the relationship of tempo and mode in bacterial evolution. J Mol Evol 1985; 21:305–316 [View Article]
    [Google Scholar]
  44. Delaney NF, Balenger S, Bonneaud C, Marx CJ, Hill GE et al. Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum . PLoS Genet 2012; 8:e1002511 [View Article]
    [Google Scholar]
  45. Gupta RS, Son J, Oren A. A phylogenomic and molecular markers based taxonomic framework for members of the order Entomoplasmatales: proposal for an emended order Mycoplasmatales containing the family Spiroplasmataceae and emended family Mycoplasmataceae comprised of six genera. Antonie Van Leeuwenhoek 2019; 112:561–588 [View Article][PubMed]
    [Google Scholar]
  46. McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 2012; 10:13–26 [View Article]
    [Google Scholar]
  47. Clark TB, Whitcomb RF. Pathogenicity of mollicutes for insects: possible use in biological control. Ann Microbiol 1984; 135A:141–150 [View Article][PubMed]
    [Google Scholar]
  48. Schneider DI, Saarman N, Onyango MG, Hyseni C, Opiro R et al. Spatio-temporal distribution of Spiroplasma infections in the tsetse fly (Glossina fuscipes fuscipes) in northern Uganda. PLoS Negl Trop Dis 2019; 13:e0007340 [View Article][PubMed]
    [Google Scholar]
  49. Ota T, Kawabe M, Oishi K, Poulson DF. Non-male-killing spiroplasmas in Drosophila hydei . J Hered 1979; 70:211–213 [View Article]
    [Google Scholar]
  50. Montenegro H, Solferini VN, Klaczko LB, Hurst GDD. Male-killing Spiroplasma naturally infecting Drosophila melanogaster . Insect Mol Biol 2005; 14:281–287 [View Article]
    [Google Scholar]
  51. Paredes JC, Herren JK, Schüpfer F, Marin R, Claverol S et al. Genome sequence of the Drosophila melanogaster male-killing Spiroplasma strain MSRO endosymbiont. mBio 2015; 6:e02437-14 [View Article][PubMed]
    [Google Scholar]
  52. Masson F, Calderon Copete S, Schüpfer F, Garcia-Arraez G, Lemaitre B. In vitro culture of the insect endosymbiont Spiroplasma poulsonii highlights bacterial genes involved in host-symbiont interaction. mBio 2018; 9:e00024-18 [View Article][PubMed]
    [Google Scholar]
  53. Mateos M, Castrezana SJ, Nankivell BJ, Estes AM, Markow TA et al. Heritable endosymbionts of Drosophila . Genetics 2006; 174:363–376 [View Article]
    [Google Scholar]
  54. Montenegro H, Souza WN, Da Silva Leite D, Klaczko LB. Male-killing selfish cytoplasmic element causes sex-ratio distortion in Drosophila melanogaster . Heredity 2000; 85:465–470 [View Article]
    [Google Scholar]
  55. Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom 2017; 3:e000132 [View Article]
    [Google Scholar]
  56. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  57. Miller DE, Staber C, Zeitlinger J, Hawley RS. Highly contiguous genome assemblies of 15 Drosophila species generated using nanopore sequencing. G3 2018; 8:3131–3141 [View Article][PubMed]
    [Google Scholar]
  58. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. blast+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article]
    [Google Scholar]
  59. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article]
    [Google Scholar]
  60. De Maio N, Shaw LP, Hubbard A, George S, Sanderson ND et al. Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. Microb Genom 2019; 5:e000294 [View Article]
    [Google Scholar]
  61. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [View Article]
    [Google Scholar]
  62. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article]
    [Google Scholar]
  63. Seemann T. Snippy: fast bacterial variant calling from NGS reads 2015
  64. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  65. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article][PubMed]
    [Google Scholar]
  66. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006; 34:D354–D357 [View Article][PubMed]
    [Google Scholar]
  67. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015; 16:157 [View Article]
    [Google Scholar]
  68. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article]
    [Google Scholar]
  69. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article]
    [Google Scholar]
  70. Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the presence of recombination. Genetics 2006; 172:2665–2681 [View Article]
    [Google Scholar]
  71. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article]
    [Google Scholar]
  72. Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol 2016; 65:997–1008 [View Article]
    [Google Scholar]
  73. Lanfear R, Calcott B, Ho SYW, Guindon S. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 2012; 29:1695–1701 [View Article]
    [Google Scholar]
  74. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article]
    [Google Scholar]
  75. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article]
    [Google Scholar]
  76. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article]
    [Google Scholar]
  77. Akhter S, Aziz RK, Edwards RA. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res 2012; 40:e126 [View Article]
    [Google Scholar]
  78. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article]
    [Google Scholar]
  79. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016; 44:D279–D285 [View Article]
    [Google Scholar]
  80. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [View Article]
    [Google Scholar]
  81. Madeira F, Park YM, Lee J, Buso N, Gur T et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 2019; 47:W636–W641 [View Article]
    [Google Scholar]
  82. Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 2019; 37:420–423 [View Article]
    [Google Scholar]
  83. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305:567–580 [View Article]
    [Google Scholar]
  84. Ankenbrand MJ, Hohlfeld S, Hackl T, Förster F. AliTV—interactive visualization of whole genome comparisons. PeerJ Computer Science 2017; 3:e116 [View Article]
    [Google Scholar]
  85. Russel J, Pinilla-Redondo R, Mayo-Muñoz D, Shah SA, Sørensen SJ. CRISPRCasTyper: automated identification, annotation, and classification of CRISPR-Cas loci. CRISPR J 2020; 3:462–469 [View Article][PubMed]
    [Google Scholar]
  86. Mitrofanov A, Alkhnbashi OS, Shmakov SA, Makarova KS, Koonin EV et al. CRISPRidentify: identification of CRISPR arrays using machine learning approach. Nucleic Acids Res 2020 08 Dec 2020 [View Article][PubMed]
    [Google Scholar]
  87. R Core Team R: a Language and Environment for Statistical Computing Vienna: R Foundation for Statistical Computing; 2016
    [Google Scholar]
  88. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019; 35:526–528 [View Article]
    [Google Scholar]
  89. Wilke CO. cowplot: streamlined plot theme and plot annotations for ‘ggplot2’ 2019 https://CRAN.R-project.org/package=cowplot
  90. Brunson JC. ggalluvial: alluvial plots in ‘ggplot2’ 2019 https://CRAN.R-project.org/package=ggalluvial
  91. Wickham H. ggplot2: Elegant Graphics for Data Analysis New York: Springer; 2009
    [Google Scholar]
  92. Yu G, Smith DK, Zhu H, Guan Y, Lam TT. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36 [View Article]
    [Google Scholar]
  93. Wilke CO. ggridges: ridgeline plots in ‘ggplot2’ 2020 https://CRAN.R-project.org/package=ggridges
  94. Subramanian B, Gao S, Lercher MJ, Hu S, Chen W-H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res 2019; 47:W270–W275 [View Article]
    [Google Scholar]
  95. Saillard C, Carle P, Duret-Nurbel S, Henri R, Killiny N et al. The abundant extrachromosomal DNA content of the Spiroplasma citri GII3-3X genome. BMC Genomics 2008; 9:195 [View Article]
    [Google Scholar]
  96. Duchêne S, Holt KE, Weill F-X, Le Hello S, Hawkey J et al. Genome-scale rates of evolutionary change in bacteria. Microb Genom 2016; 2:e000094 [View Article]
    [Google Scholar]
  97. Holmes EC. The Evolution and Emergence of RNA Viruses Oxford: Oxford University Press; 2009
    [Google Scholar]
  98. Moran NA. Tracing the evolution of gene loss in obligate bacterial symbionts. Curr Opin Microbiol 2003; 6:512–518 [View Article]
    [Google Scholar]
  99. Moran NA. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA 1996; 93:2873–2878 [View Article]
    [Google Scholar]
  100. Lynch M. Streamlining and simplification of microbial genome architecture. Annu Rev Microbiol 2006; 60:327–349 [View Article]
    [Google Scholar]
  101. Rocha EPC, Danchin A. Base composition bias might result from competition for metabolic resources. Trends Gene 2002; 18:291–294 [View Article]
    [Google Scholar]
  102. Moran NA, McLaughlin HJ, Sorek R. The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 2009; 323:379–382 [View Article]
    [Google Scholar]
  103. Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 2008; 42:165–190 [View Article]
    [Google Scholar]
  104. Burger G, Lang BF. Parallels in genome evolution in mitochondria and bacterial symbionts. IUBMB Life 2003; 55:205–212 [View Article]
    [Google Scholar]
  105. Itoh T, Martin W, Nei M. Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts. Proc Natl Acad Sci USA 2002; 99:12944–12948 [View Article]
    [Google Scholar]
  106. Massey SE. The proteomic constraint and its role in molecular evolution. Mol Biol Evol 2008; 25:2557–2565 [View Article]
    [Google Scholar]
  107. Koonin EV, Mushegian AR, Rudd KE. Sequencing and analysis of bacterial genomes. Curr Biol 1996; 6:404–416 [View Article][PubMed]
    [Google Scholar]
  108. Richardson MF, Weinert LA, Welch JJ, Linheiro RS, Magwire MM et al. Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster . PLoS Genet 2012; 8:e1003129 [View Article]
    [Google Scholar]
  109. Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2004; 2:e69 [View Article][PubMed]
    [Google Scholar]
  110. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 2000; 407:81–86 [View Article][PubMed]
    [Google Scholar]
  111. LeClerc JE, Li B, Payne WL, Cebula TA. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 1996; 274:1208–1211 [View Article][PubMed]
    [Google Scholar]
  112. Lee H, Popodi E, Tang H, Foster PL. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci USA 2012; 109:E2774–E2783 [View Article][PubMed]
    [Google Scholar]
  113. Carvalho FM, Fonseca MM, Batistuzzo De Medeiros S, Scortecci KC, Blaha CAG et al. DNA repair in reduced genome: the Mycoplasma model. Gene 2005; 360:111–119 [View Article][PubMed]
    [Google Scholar]
  114. Chen L-L, Chung W-C, Lin C-P, Kuo C-H. Comparative analysis of gene content evolution in phytoplasmas and mycoplasmas. PLoS One 2012; 7:e34407 [View Article][PubMed]
    [Google Scholar]
  115. Rocha EPC, Blanchard A. Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution. Nucleic Acids Res 2002; 30:2031–2042 [View Article][PubMed]
    [Google Scholar]
  116. Lo W-S, Huang Y-Y, Kuo C-H. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev 2016; 40:855–874 [View Article][PubMed]
    [Google Scholar]
  117. Bourguignon T, Kinjo Y, Villa-Martín P, Coleman NV, Tang Q et al. Increased mutation rate is linked to genome reduction in prokaryotes. Curr Biol 2020; 30:3848–3855 [View Article][PubMed]
    [Google Scholar]
  118. Kuo C-H, Moran NA, Ochman H. The consequences of genetic drift for bacterial genome complexity. Genome Res 2009; 19:1450–1454 [View Article][PubMed]
    [Google Scholar]
  119. Marais GAB, Batut B, Daubin V. Genome evolution: mutation is the main driver of genome size in prokaryotes. Curr Biol 2020; 30:R1083–R1085 [View Article][PubMed]
    [Google Scholar]
  120. Ho SYW, Phillips MJ, Cooper A, Drummond AJ. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 2005; 22:1561–1568 [View Article][PubMed]
    [Google Scholar]
  121. Jaenike J, Polak M, Fiskin A, Helou M, Minhas M. Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett 2007; 3:23–25 [View Article][PubMed]
    [Google Scholar]
  122. Ipoutcha T, Tsarmpopoulos I, Talenton V, Gaspin C, Moisan A et al. Multiple origins and specific evolution of CRISPR/Cas9 systems in minimal bacteria (Mollicutes). Front Microbiol 2019; 10:2701 [View Article][PubMed]
    [Google Scholar]
  123. Xie J, Winter C, Winter L, Mateos M. Rapid spread of the defensive endosymbiont Spiroplasma in Drosophila hydei under high parasitoid wasp pressure. FEMS Microbiol Ecol 2015; 91:fiu017. [View Article][PubMed]
    [Google Scholar]
  124. Osaka R, Ichizono T, Kageyama D, Nomura M, Watada M. Natural variation in population densities and vertical transmission rates of a Spiroplasma endosymbiont in Drosophila hydei . Symbiosis 2013; 60:73–78 [View Article]
    [Google Scholar]
  125. Haselkorn TS, Markow TA, Moran NA. Multiple introductions of the Spiroplasma bacterial endosymbiont into Drosophila . Mol Ecol 2009; 18:1294–1305 [View Article][PubMed]
    [Google Scholar]
  126. Conner WR, Blaxter ML, Anfora G, Ometto L, Rota-Stabelli O et al. Genome comparisons indicate recent transfer of wRi-like Wolbachia between sister species Drosophila suzukii and D. subpulchrella . Ecol Evol 2017; 7:9391–9404 [View Article][PubMed]
    [Google Scholar]
  127. Hurst GDD, Jiggins FM. Male-killing bacteria in insects: mechanisms, incidence, and implications. Emerg Infect Dis 2000; 6:329–336 [View Article][PubMed]
    [Google Scholar]
  128. Turelli M, Hoffmann AA. Rapid spread of an inherited incompatibility factor in California Drosophila . Nature 1991; 353:440–442 [View Article][PubMed]
    [Google Scholar]
  129. Cockburn SN, Haselkorn TS, Hamilton PT, Landzberg E, Jaenike J et al. Dynamics of the continent-wide spread of a Drosophila defensive symbiont. Ecol Lett 2013; 16:609–616 [View Article][PubMed]
    [Google Scholar]
  130. Watts T, Haselkorn TS, Moran NA, Markow TA. Variable incidence of Spiroplasma infections in natural populations of Drosophila species. PLoS One 2009; 4:e5703 [View Article][PubMed]
    [Google Scholar]
  131. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. How many species are infected with Wolbachia? – a statistical analysis of current data. FEMS Microbiol Lett 2008; 281:215–220 [View Article][PubMed]
    [Google Scholar]
  132. Regassa LB, Gasparich GE. Spiroplasmas: evolutionary relationships and biodiversity. Front Biosci 2006; 11:2983–3002 [View Article][PubMed]
    [Google Scholar]
  133. Viver T, Orellana LH, Hatt JK, Urdiain M, Díaz S et al. The low diverse gastric microbiome of the jellyfish Cotylorhiza tuberculata is dominated by four novel taxa. Environ Microbiol 2017; 19:3039–3058 [View Article][PubMed]
    [Google Scholar]
  134. Haselkorn TS, Cockburn SN, Hamilton PT, Perlman SJ, Jaenike J. Infectious adaptation: potential host range of a defensive endosymbiont in Drosophila . Evolution 2013; 67:934–945 [View Article][PubMed]
    [Google Scholar]
  135. Haselkorn TS, Jaenike J. Macroevolutionary persistence of heritable endosymbionts: acquisition, retention and expression of adaptive phenotypes in Spiroplasma . Mol Ecol 2015; 24:3752–3765 [View Article][PubMed]
    [Google Scholar]
  136. Hou L, Liu Y, Gao Q, Xu X, Ning M et al. Spiroplasma eriocheiris adhesin-like protein (ALP) Interacts with epidermal growth factor (EGF) domain proteins to facilitate infection. Front Cell Infect Microbiol 2017; 7:13 [View Article][PubMed]
    [Google Scholar]
  137. Béven L, Duret S, Batailler B, Dubrana M-P, Saillard C et al. The repetitive domain of ScARP3d triggers entry of Spiroplasma citri into cultured cells of the vector Circulifer haematoceps . PLoS One 2012; 7:e48606 [View Article][PubMed]
    [Google Scholar]
  138. Dubrana MP, Béven L, Arricau-Bouvery N, Duret S, Claverol S et al. Differential expression of Spiroplasma citri surface protein genes in the plant and insect hosts. BMC Microbiol 2016; 16:53 [View Article][PubMed]
    [Google Scholar]
  139. Jaenike J. Population genetics of beneficial heritable symbionts. Trends Ecol Evol 2012; 27:226–232 [View Article][PubMed]
    [Google Scholar]
  140. Turelli M, Cooper BS, Richardson KM, Ginsberg PS, Peckenpaugh B et al. Rapid global spread of wRi-like Wolbachia across multiple Drosophila . Curr Biol 2018; 28:963–971 [View Article][PubMed]
    [Google Scholar]
  141. Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 2008; 9:267–276 [View Article]
    [Google Scholar]
  142. Degnan PH, Lazarus AB, Brock CD, Wernegreen JJ. Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia. Syst Biol 2004; 53:95–110 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000503
Loading
/content/journal/mgen/10.1099/mgen.0.000503
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error