1887

Abstract

Diagnosing antimicrobial resistance (AMR) in the clinic is based on empirical evidence and current gold standard laboratory phenotypic methods. Genotypic methods have the potential advantages of being faster and cheaper, and having improved mechanistic resolution over phenotypic methods. We generated and applied rule-based and logistic regression models to predict the AMR phenotype from and multidrug-resistant clinical isolate genomes. By inspecting and evaluating these models, we identified previously unknown β-lactamase substrate activities. In total, 22 unknown β-lactamase substrate activities were experimentally validated using targeted gene expression studies. Our results demonstrate that generating and analysing predictive models can help guide researchers to the mechanisms driving resistance and improve annotation of AMR genes and phenotypic prediction, and suggest that we cannot solely rely on curated knowledge to predict resistance phenotypes.

Funding
This study was supported by the:
  • AndrewG. McArthur , Canadian Institutes of Health Research , (Award PJT-156214)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000500
2021-01-08
2021-03-01
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/1/mgen000500.html?itemId=/content/journal/mgen/10.1099/mgen.0.000500&mimeType=html&fmt=ahah

References

  1. World Health Organization Antimicrobial resistance: global report on surveillance. World Health organization report. Geneva 2014
    [Google Scholar]
  2. U.S. Department of Health and Human Services CDC Antibiotic resistance threats in the United States, 2019. Atlanta, GA, USA 2019
    [Google Scholar]
  3. Maugeri G, Lychko I, Sobral R, Roque ACA. Identification and antibiotic-susceptibility profiling of infectious bacterial agents: a review of current and future trends. Biotechnol J 2019; 14:e1700750 [CrossRef][PubMed]
    [Google Scholar]
  4. Maurer FP, Christner M, Hentschke M, Rohde H. Advances in rapid identification and susceptibility testing of bacteria in the clinical microbiology laboratory: implications for patient care and antimicrobial stewardship programs. Infect Dis Rep 2017; 9:6839 [CrossRef][PubMed]
    [Google Scholar]
  5. Chan K-G. Whole-genome sequencing in the prediction of antimicrobial resistance. Expert Rev Anti Infect Ther 2016; 14:617–619 [CrossRef][PubMed]
    [Google Scholar]
  6. Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol 2017; 15:422–434 [CrossRef][PubMed]
    [Google Scholar]
  7. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res 2019; 10:D517–D525 [CrossRef]
    [Google Scholar]
  8. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 2014; 58:212–220 [CrossRef][PubMed]
    [Google Scholar]
  9. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [CrossRef][PubMed]
    [Google Scholar]
  10. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [CrossRef][PubMed]
    [Google Scholar]
  11. Gibson MK, Forsberg KJ, Dantas G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J 2015; 9:207–216 [CrossRef][PubMed]
    [Google Scholar]
  12. McArthur AG, Tsang KK. Antimicrobial resistance surveillance in the genomic age. Ann N Y Acad Sci 2017; 1388:78–91 [CrossRef][PubMed]
    [Google Scholar]
  13. van Belkum A, Bachmann TT, Lüdke G, Lisby JG, Kahlmeter G et al. Developmental roadmap for antimicrobial susceptibility testing systems. Nat Rev Microbiol 2019; 17:51–62 [CrossRef][PubMed]
    [Google Scholar]
  14. Cantu C, Huang W, Palzkill T. Cephalosporin substrate specificity determinants of TEM-1 β-lactamase. J Biol Chem 1997; 272:29144–29150 [CrossRef][PubMed]
    [Google Scholar]
  15. Chiou J, Leung TYC, Chen S. Molecular mechanisms of substrate recognition and specificity of New Delhi metallo-β-lactamase. Antimicrob Agents Chemother 2014; 58:5372–5378 [CrossRef][PubMed]
    [Google Scholar]
  16. Jacquier H, Birgy A, Le Nagard H, Mechulam Y, Schmitt E et al. Capturing the mutational landscape of the β-lactamase TEM-1. Proc Natl Acad Sci U S A 2013; 110:13067–13072 [CrossRef][PubMed]
    [Google Scholar]
  17. Khan S, Sallum UW, Zheng X, Nau GJ, Hasan T. Rapid optical determination of β-lactamase and antibiotic activity. BMC Microbiol 2014; 14:84 [CrossRef][PubMed]
    [Google Scholar]
  18. Lee D, Das S, Dawson NL, Dobrijevic D, Ward J et al. Novel computational protocols for functionally classifying and characterising serine beta-lactamases. PLoS Comput Biol 2016; 12:e1004926 [CrossRef][PubMed]
    [Google Scholar]
  19. Majiduddin FK, Palzkill T. Amino acid residues that contribute to substrate specificity of class a β-lactamase SME-1. Antimicrob Agents Chemother 2005; 49:3421–3427 [CrossRef][PubMed]
    [Google Scholar]
  20. Palzkill T. Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci 2018; 5:16 [CrossRef][PubMed]
    [Google Scholar]
  21. Cox G, Sieron A, King AM, De Pascale G, Pawlowski AC et al. A common platform for antibiotic dereplication and adjuvant discovery. Cell Chem Biol 2017; 24:98–109 [CrossRef][PubMed]
    [Google Scholar]
  22. Davis JJ, Boisvert S, Brettin T, Kenyon RW, Mao C et al. Antimicrobial resistance prediction in PATRIC and RAST. Sci Rep 2016; 6:27930 [CrossRef][PubMed]
    [Google Scholar]
  23. Drouin A, Giguère S, Déraspe M, Marchand M, Tyers M et al. Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons. BMC Genomics 2016; 17:754 [CrossRef][PubMed]
    [Google Scholar]
  24. Pesesky MW, Hussain T, Wallace M, Patel S, Andleeb S et al. Evaluation of machine learning and rules-based approaches for predicting antimicrobial resistance profiles in Gram-negative bacilli from whole genome sequence data. Front Microbiol 2016; 7:7 [CrossRef][PubMed]
    [Google Scholar]
  25. Johnson JR, Johnston B, Clabots C, Kuskowski MA, Castanheira M. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis 2010; 51:286–294 [CrossRef][PubMed]
    [Google Scholar]
  26. Pitout JDD, DeVinney R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Res 2017; 6:195 [CrossRef][PubMed]
    [Google Scholar]
  27. Tchesnokova VL, Rechkina E, Larson L, Ferrier K, Weaver JL et al. Rapid and extensive expansion in the United States of a new multidrug-resistant Escherichia coli clonal group, sequence type 1193. Clin Infect Dis 2019; 68:334–337 [CrossRef][PubMed]
    [Google Scholar]
  28. Wu J, Lan F, Lu Y, He Q, Li B. Molecular characteristics of ST1193 clone among phylogenetic group B2 non-ST131 Fluoroquinolone-Resistant Escherichia coli . Front Microbiol 2017; 8:2294 [CrossRef][PubMed]
    [Google Scholar]
  29. Xia L, Liu Y, Xia S, Kudinha T, Xiao S-N et al. Prevalence of ST1193 clone and IncI1/ST16 plasmid in E-coli isolates carrying blaCTX-M-55 gene from urinary tract infections patients in China. Sci Rep 2017; 7:44866 [CrossRef][PubMed]
    [Google Scholar]
  30. Chen Y, Sun M, Wang M, Lu Y, Yan Z. Dissemination of IMP-6-producing Pseudomonas aeruginosa ST244 in multiple cities in China. Eur J Clin Microbiol Infect Dis 2014; 33:1181–1187 [CrossRef][PubMed]
    [Google Scholar]
  31. Empel J, Filczak K, Mrowka A, Hryniewicz W, Livermore DM et al. Outbreak of Pseudomonas aeruginosa infections with PER-1 extended-spectrum beta-lactamase in Warsaw, Poland: further evidence for an international clonal complex. J Clin Microbiol 2007; 45:2829–2834 [CrossRef][PubMed]
    [Google Scholar]
  32. Treepong P, Kos VN, Guyeux C, Blanc DS, Bertrand X et al. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin Microbiol Infect 2018; 24:258–266 [CrossRef][PubMed]
    [Google Scholar]
  33. Koutsogiannou M, Drougka E, Liakopoulos A, Jelastopulu E, Petinaki E et al. Spread of multidrug-resistant Pseudomonas aeruginosa clones in a university hospital. J Clin Microbiol 2013; 51:665–668 [CrossRef][PubMed]
    [Google Scholar]
  34. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D et al. Fluoroquinolone-Modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase . Nat Med 2006; 12:83–88 [CrossRef][PubMed]
    [Google Scholar]
  35. Sutcliffe JG. Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc Natl Acad Sci U S A 1978; 75:3737–3741 [CrossRef][PubMed]
    [Google Scholar]
  36. Belaaouaj A, Lapoumeroulie C, Caniça MM, Vedel G, Névot P et al. Nucleotide sequences of the genes coding for the TEM-like beta-lactamases IRT-1 and IRT-2 (formerly called TRI-1 and TRI-2). FEMS Microbiol Lett 1994; 120:75–80 [CrossRef][PubMed]
    [Google Scholar]
  37. Poirel L, Gniadkowski M, Nordmann P. Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum beta-lactamase CTX-M-15 and of its structurally related beta-lactamase CTX-M-3. J Antimicrob Chemother 2002; 50:1031–1034 [CrossRef][PubMed]
    [Google Scholar]
  38. Girlich D, Naas T, Nordmann P. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa . Antimicrob Agents Chemother 2004; 48:2043–2048 [CrossRef][PubMed]
    [Google Scholar]
  39. Fernández L, Hancock REW. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev 2012; 25:661–681 [CrossRef][PubMed]
    [Google Scholar]
  40. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. Jair 2002; 16:321–357 [CrossRef]
    [Google Scholar]
  41. Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol 2014; 1151:165–188 [CrossRef][PubMed]
    [Google Scholar]
  42. Ocampo-Sosa AA, Cabot G, Rodríguez C, Roman E, Tubau F et al. Alterations of oprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrob Agents Chemother 2012; 56:1703–1713 [CrossRef][PubMed]
    [Google Scholar]
  43. Clinical and Laboratory Standards Institute M100: Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.
    [Google Scholar]
  44. The European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters, version 10.0; 2020
  45. Box GEP. Science and statistics. J Am Stat Assoc 1976; 71:791–799 [CrossRef]
    [Google Scholar]
  46. Schmutz E, Mühlenweg A, Li S-M, Heide L. Resistance genes of aminocoumarin producers: two type II topoisomerase genes confer resistance against coumermycin A1 and clorobiocin. Antimicrob Agents Chemother 2003; 47:869–877 [CrossRef][PubMed]
    [Google Scholar]
  47. Livermore DM, Sefton AM, Scott GM. Properties and potential of ertapenem. J Antimicrob Chemother 2003; 52:331–344 [CrossRef][PubMed]
    [Google Scholar]
  48. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  49. Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010
  50. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  51. Ames SK, Hysom DA, Gardner SN, Lloyd GS, Gokhale MB et al. Scalable metagenomic taxonomy classification using a reference genome database. Bioinformatics 2013; 29:2253–2260 [CrossRef][PubMed]
    [Google Scholar]
  52. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [CrossRef][PubMed]
    [Google Scholar]
  53. Pedregosa F, Varoquaux G, Gramfort A, Michel V. Scikit-learn: machine learning in python. J Mach Learn Res 2011; 12:2825–2830
    [Google Scholar]
  54. Lemaître G, Nogueira F, Aridas CK. Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J Mach Learn Res 2017; 18:559–563
    [Google Scholar]
  55. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One 2015; 10:e0118432 [CrossRef][PubMed]
    [Google Scholar]
  56. Oliphant TE. A Guide to NumPy 1 Trelgol Publishing; 2006 p 85
    [Google Scholar]
  57. McKinney W. Data structures for statistical computing in python. Proceedings of the 9th Python in Science Conference 201051–56
    [Google Scholar]
  58. van Rossum G, Drake FL. Python language reference manual. python language reference manual. Network Theory Ltd 2003
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000500
Loading
/content/journal/mgen/10.1099/mgen.0.000500
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error