1887

Abstract

, the bacterium responsible for the sexually transmitted disease gonorrhoea, has shown an extraordinary ability to develop antimicrobial resistance (AMR) to multiple classes of antimicrobials. With no available vaccine, managing infections demands effective preventive measures, antibiotic treatment and epidemiological surveillance. The latter two are progressively being supported by the generation of whole-genome sequencing (WGS) data on behalf of national and international surveillance programmes. In this context, this study aims to perform clustering into genogroups based on WGS data, for enhanced prospective laboratory surveillance. Particularly, it aims to identify the major circulating WGS-genogroups in Europe and to establish a relationship between these and AMR. Ultimately, it enriches public databases by contributing with WGS data from Portuguese isolates spanning 15 years of surveillance. A total of 3791 carefully inspected genomes from isolates collected across Europe were analysed using a gene-by-gene approach (i.e. using cgMLST). Analysis of cluster composition and stability allowed the classification of isolates into a two-step hierarchical genogroup level determined by two allelic distance thresholds revealing cluster stability. Genogroup clustering in general agreed with available typing methods [i.e. MLST (multilocus sequence typing), NG-MAST ( multi-antigen sequence typing) and PubMLST core-genome groups], highlighting the predominant genogroups circulating in Europe, and revealed that the vast majority of the genogroups present a dominant AMR profile. Additionally, a non-static gene-by-gene approach combined with a more discriminatory threshold for potential epidemiological linkage enabled us to match data with previous reports on outbreaks or transmission chains. In conclusion, this genogroup assignment allows a comprehensive analysis of genetic diversity and the identification of the WGS-based genogroups circulating in Europe, while facilitating the assessment (and continuous monitoring) of their frequency, geographical dispersion and potential association with specific AMR signatures. This strategy may benefit public-health actions through the prioritization of genogroups to be controlled, the identification of emerging resistance carriage, and the potential facilitation of data sharing and communication.

Funding
This study was supported by the:
  • Fundação para a Ciência e a Tecnologia (Award POCI-01-0145-FEDER-022184)
  • Fundação para a Ciência e a Tecnologia (Award SFRH/BD/109264/2015)
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000481
2020-11-27
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/2/mgen000481.html?itemId=/content/journal/mgen/10.1099/mgen.0.000481&mimeType=html&fmt=ahah

References

  1. Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One 2015; 10:e0143304 [View Article][PubMed]
    [Google Scholar]
  2. World Health Organization Report on Global Sexually Transmitted Infection Surveillance, 2018 Geneva: WHO; 2018
    [Google Scholar]
  3. European Centre for Disease Prevention and Control Gonococcal Antimicrobial Susceptibility Surveillance in Europe – Results Summary 2017 Stockholm: ECDC; 2019
    [Google Scholar]
  4. Unemo M, Golparian D, Eyre DW. Antimicrobial resistance in Neisseria gonorrhoeae and treatment of gonorrhea. Methods Mol Biol 2019; 1997:37–58 [View Article][PubMed]
    [Google Scholar]
  5. Goire N, Lahra MM, Chen M, Donovan B, Fairley CK et al. Molecular approaches to enhance surveillance of gonococcal antimicrobial resistance. Nat Rev Microbiol 2014; 12:223–229 [View Article][PubMed]
    [Google Scholar]
  6. Harris SR, Cole MJ, Spiteri G, Sánchez-Busó L, Golparian D et al. Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe: a genomic survey. Lancet Infect Dis 2018; 18:758–768 [View Article][PubMed]
    [Google Scholar]
  7. Eyre DW, De Silva D, Cole K, Peters J, Cole MJ et al. WGS to predict antibiotic MICs for Neisseria gonorrhoeae . J Antimicrob Chemother 2017; 72:1937–1947 [View Article][PubMed]
    [Google Scholar]
  8. Cole MJ, Spiteri G, Chisholm SA, Hoffmann S, Ison CA et al. Emerging cephalosporin and multidrug-resistant gonorrhoea in Europe. Euro Surveill 2014; 19:20955 [View Article][PubMed]
    [Google Scholar]
  9. Yu R-X, Yin Y, Wang G-Q, Chen S-C, Zheng B-J et al. Worldwide susceptibility rates of Neisseria gonorrhoeae isolates to cefixime and cefpodoxime: a systematic review and meta-analysis. PLoS One 2014; 9:e87849 [View Article][PubMed]
    [Google Scholar]
  10. Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S et al. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 2011; 55:3538–3545 [View Article][PubMed]
    [Google Scholar]
  11. Cámara J, Serra J, Ayats J, Bastida T, Carnicer-Pont D et al. Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J Antimicrob Chemother 2012; 67:1858–1860 [View Article][PubMed]
    [Google Scholar]
  12. Eyre DW, Sanderson ND, Lord E, Regisford-Reimmer N, Chau K et al. Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Euro Surveill 2018; 23:1800323 [View Article]
    [Google Scholar]
  13. Poncin T, Fouere S, Braille A, Camelena F, Agsous M et al. Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017. Euro Surveill 2018; 23:1800264 [View Article]
    [Google Scholar]
  14. Pinto M, Matias R, Rodrigues JC, Duarte S, Vieira L et al. Cephalosporin-resistant Neisseria gonorrhoeae isolated in Portugal, 2019. Sex Transm Dis 2020; 47:e54–e56 [View Article][PubMed]
    [Google Scholar]
  15. Day MJ, Spiteri G, Jacobsson S, Woodford N, Amato-Gauci AJ et al. Stably high azithromycin resistance and decreasing ceftriaxone susceptibility in Neisseria gonorrhoeae in 25 European countries, 2016. BMC Infect Dis 2018; 18:609 [View Article][PubMed]
    [Google Scholar]
  16. Thakur SD, Levett PN, Horsman GB, Dillon JR. High levels of susceptibility to new and older antibiotics in Neisseria gonorrhoeae isolates from Saskatchewan (2003-15): time to consider point-of-care or molecular testing for precision treatment?. J Antimicrob Chemother 2018; 73:118–125 [View Article][PubMed]
    [Google Scholar]
  17. Liang J-Y, Cao W-L, Li X-D, Bi C, Yang R-D et al. Azithromycin-resistant Neisseria gonorrhoeae isolates in Guangzhou, China (2009-2013): coevolution with decreased susceptibilities to ceftriaxone and genetic characteristics. BMC Infect Dis 2016; 16:152 [View Article][PubMed]
    [Google Scholar]
  18. Katz AR, Komeya AY, Kirkcaldy RD, Whelen AC, Soge OO et al. Cluster of Neisseria gonorrhoeae isolates with high-level azithromycin resistance and decreased ceftriaxone susceptibility, Hawaii, 2016. Clin Infect Dis 2017; 65:918–923 [View Article][PubMed]
    [Google Scholar]
  19. Cole MJ, Spiteri G, Jacobsson S, Woodford N, Tripodo F et al. Overall low extended-spectrum cephalosporin resistance but high azithromycin resistance in Neisseria gonorrhoeae in 24 European countries, 2015. BMC Infect Dis 2017; 17:617 [View Article][PubMed]
    [Google Scholar]
  20. Chisholm SA, Wilson J, Alexander S, Tripodo F, Al-Shahib A et al. An outbreak of high-level azithromycin resistant Neisseria gonorrhoeae in England. Sex Transm Infect 2016; 92:365–367 [View Article][PubMed]
    [Google Scholar]
  21. Smolarchuk C, Wensley A, Padfield S, Fifer H, Lee A et al. Persistence of an outbreak of gonorrhoea with high-level resistance to azithromycin in England, November 2014‒May 2018. Euro Surveill 2018; 23:1800287 [View Article]
    [Google Scholar]
  22. Lahra MM, Ward A, Trembizki E, Hermanson J, Clements E et al. Treatment guidelines after an outbreak of azithromycin-resistant Neisseria gonorrhoeae in South Australia. Lancet Infect Dis 2017; 17:133–134 [View Article][PubMed]
    [Google Scholar]
  23. Weston EJ, Wi T, Papp J. Strengthening global surveillance for antimicrobial drug–resistant Neisseria gonorrhoeae through the enhanced gonococcal antimicrobial surveillance program. Emerg Infect Dis 2017; 23:S47–S52
    [Google Scholar]
  24. Demczuk W, Sidhu S, Unemo M, Whiley DM, Allen VG et al. Neisseria gonorrhoeae sequence typing for antimicrobial resistance, a novel antimicrobial resistance multilocus typing scheme for tracking global dissemination of N. gonorrhoeae strains. J Clin Microbiol 2017; 55:1454–1468 [View Article][PubMed]
    [Google Scholar]
  25. Demczuk W, Lynch T, Martin I, Van Domselaar G, Graham M et al. Whole-genome phylogenomic heterogeneity of Neisseria gonorrhoeae isolates with decreased cephalosporin susceptibility collected in Canada between 1989 and 2013. J Clin Microbiol 2015; 53:191–200 [View Article][PubMed]
    [Google Scholar]
  26. Demczuk W, Martin I, Peterson S, Bharat A, Van Domselaar G et al. Genomic epidemiology and molecular resistance mechanisms of azithromycin-resistant Neisseria gonorrhoeae in Canada from 1997 to 2014. J Clin Microbiol 2016; 54:1304–1313 [View Article][PubMed]
    [Google Scholar]
  27. Sánchez-Busó L, Golparian D, Corander J, Grad YH, Ohnishi M et al. The impact of antimicrobials on gonococcal evolution. Nat Microbiol 2019; 4:1941–1950 [View Article][PubMed]
    [Google Scholar]
  28. Harrison OB, Cehovin A, Skett J, Jolley KA, Massari P et al. Neisseria gonorrhoeae population genomics: use of the gonococcal core genome to improve surveillance of antimicrobial resistance. J Infect Dis 2020; 222:1816–1825 [View Article][PubMed]
    [Google Scholar]
  29. Sánchez-Busó L, Harris SR. Using genomics to understand antimicrobial resistance and transmission in Neisseria gonorrhoeae . Microb Genom 2019; 5:e000239 [View Article]
    [Google Scholar]
  30. O'Rourke M, Stevens E. Genetic structure of Neisseria gonorrhoeae populations: a non-clonal pathogen. J Gen Microbiol 1993; 139:2603–2611 [View Article][PubMed]
    [Google Scholar]
  31. Pinto M, Rodrigues JC, Matias R, Água-Doce I, Cordeiro D et al. Fifteen years of a nationwide culture collection of Neisseria gonorrhoeae antimicrobial resistance in Portugal. Eur J Clin Microbiol Infect Dis 2020; 39:1761–1770 [View Article][PubMed]
    [Google Scholar]
  32. European Centre for Disease Prevention and Control Gonococcal Antimicrobial Susceptibility Surveillance in Europe 2015 Stockholm: ECDC; 2017
    [Google Scholar]
  33. European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters, version 9.0 Basel: EUCAST; 2019
    [Google Scholar]
  34. Didelot X, Dordel J, Whittles LK, Collins C, Bilek N et al. Genomic analysis and comparison of two gonorrhea outbreaks. mBio 2016; 7:e00525-16 [View Article][PubMed]
    [Google Scholar]
  35. Fifer H, Cole M, Hughes G, Padfield S, Smolarchuk C et al. Sustained transmission of high-level azithromycin-resistant Neisseria gonorrhoeae in England: an observational study. Lancet Infect Dis 2018; 18:573–581 [View Article][PubMed]
    [Google Scholar]
  36. Mac Aogáin M, Fennelly N, Walsh A, Lynagh Y, Bekaert M et al. Fourteen draft genome sequences for the first reported cases of azithromycin-resistant Neisseria gonorrhoeae in Ireland. Genome Announc 2017; 5:e00403-17 [View Article][PubMed]
    [Google Scholar]
  37. Wind CM, de Vries E, Schim van der Loeff MF, van Rooijen MS, van Dam AP et al. Decreased azithromycin susceptibility of Neisseria gonorrhoeae isolates in patients recently treated with azithromycin. Clin Infect Dis 2017; 65:37–45 [View Article][PubMed]
    [Google Scholar]
  38. Ryan L, Golparian D, Fennelly N, Rose L, Walsh P et al. Antimicrobial resistance and molecular epidemiology using whole-genome sequencing of Neisseria gonorrhoeae in Ireland, 2014-2016: focus on extended-spectrum cephalosporins and azithromycin. Eur J Clin Microbiol Infect Dis 2018; 37:1661–1672 [View Article][PubMed]
    [Google Scholar]
  39. De Silva D, Peters J, Cole K, Cole MJ, Cresswell F et al. Whole-genome sequencing to determine transmission of Neisseria gonorrhoeae: an observational study. Lancet Infect Dis 2016; 16:1295–1303 [View Article][PubMed]
    [Google Scholar]
  40. Llarena A‐K, Ribeiro‐Gonçalves BF, Nuno Silva D, Halkilahti J, Machado MP et al. INNUENDO: a cross‐sectoral platform for the integration of genomics in the surveillance of food‐borne pathogens. EFSA Supporting Publications 2018; 15:EN‐1498 [View Article]
    [Google Scholar]
  41. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  42. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  43. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article][PubMed]
    [Google Scholar]
  44. Kwong JC, Gonçalves da Silva A, Dyet K, Williamson DA, Stinear TP et al. NGMASTER: in silico multi-antigen sequence typing for Neisseria gonorrhoeae . Microb Genom 2016; 2:e000076 [View Article][PubMed]
    [Google Scholar]
  45. Bennett JS, Watkins ER, Jolley KA, Harrison OB, Maiden MC. Identifying Neisseria species by use of the 50S ribosomal protein L6 (rplF) gene. J Clin Microbiol 2014; 52:1375–1381 [View Article][PubMed]
    [Google Scholar]
  46. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017; 3:e000131 [View Article][PubMed]
    [Google Scholar]
  47. Unemo M, Golparian D, Sánchez-Busó L, Grad Y, Jacobsson S et al. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. J Antimicrob Chemother 2016; 71:3096–3108 [View Article][PubMed]
    [Google Scholar]
  48. Silva M, Machado MP, Silva DN, Rossi M, Moran-Gilad J et al. chewBBACA: a complete suite for gene-by-gene schema creation and strain identification. Microb Genom 2018; 4:e000166 [View Article][PubMed]
    [Google Scholar]
  49. Francisco AP, Bugalho M, Ramirez M, Carriço JA. Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics 2009; 10:152 [View Article][PubMed]
    [Google Scholar]
  50. Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M et al. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics 2012; 13:87 [View Article][PubMed]
    [Google Scholar]
  51. Ribeiro-Gonçalves B, Francisco AP, Vaz C, Ramirez M, Carriço JA. PHYLOViZ Online: web-based tool for visualization, phylogenetic inference, analysis and sharing of minimum spanning trees. Nucleic Acids Res 2016; 44:W246–W251 [View Article][PubMed]
    [Google Scholar]
  52. Carriço JA, Silva-Costa C, Melo-Cristino J, Pinto FR, de Lencastre H et al. Illustration of a common framework for relating multiple typing methods by application to macrolide-resistant Streptococcus pyogenes . J Clin Microbiol 2006; 44:2524–2532 [View Article][PubMed]
    [Google Scholar]
  53. Severiano A, Pinto FR, Ramirez M, Carriço JA. Adjusted Wallace coefficient as a measure of congruence between typing methods. J Clin Microbiol 2011; 49:3997–4000 [View Article][PubMed]
    [Google Scholar]
  54. Barker DOR, Carriço JA, Kruczkiewicz P, Palma F, Rossi M et al. Rapid identification of stable clusters in bacterial populations using the adjusted Wallace coefficient. bioRxiv 2018299347
    [Google Scholar]
  55. Nascimento M, Sousa A, Ramirez M, Francisco AP, Carriço JA et al. PHYLOViZ 2.0: providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics 2017; 33:128–129 [View Article][PubMed]
    [Google Scholar]
  56. Zhou Z, Alikhan NF, Sergeant MJ, Luhmann N, Vaz C et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 2018; 28:1395–1404 [View Article][PubMed]
    [Google Scholar]
  57. Deng X, Klausner JD. Six penA codons accurately and reliably predict cefixime-decreased susceptibility in Neisseria gonorrhoeae . J Infect Dis 2020; 221:851–852 [View Article][PubMed]
    [Google Scholar]
  58. Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A et al. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother 2012; 56:1273–1280 [View Article][PubMed]
    [Google Scholar]
  59. Belkacem A, Jacquier H, Goubard A, Mougari F, La Ruche G et al. Molecular epidemiology and mechanisms of resistance of azithromycin-resistant Neisseria gonorrhoeae isolated in France during 2013-14. J Antimicrob Chemother 2016; 71:2471–2478 [View Article][PubMed]
    [Google Scholar]
  60. Calado J, Castro R, Lopes Ângela, Campos MJ, Rocha M et al. Antimicrobial resistance and molecular characteristics of Neisseria gonorrhoeae isolates from men who have sex with men. Int J Infect Dis 2019; 79:116–122 [View Article][PubMed]
    [Google Scholar]
  61. Mortimer TD, Grad YH. Applications of genomics to slow the spread of multidrug-resistant Neisseria gonorrhoeae . Ann N Y Acad Sci 2019; 1435:93–109 [View Article][PubMed]
    [Google Scholar]
  62. Cehovin A, Harrison OB, Lewis SB, Ward PN, Ngetsa C et al. Identification of novel Neisseria gonorrhoeae lineages harboring resistance plasmids in coastal Kenya. J Infect Dis 2018; 218:801–808 [View Article][PubMed]
    [Google Scholar]
  63. Yahara K, Nakayama S-I, Shimuta K, Lee K-I, Morita M et al. Genomic surveillance of Neisseria gonorrhoeae to investigate the distribution and evolution of antimicrobial-resistance determinants and lineages. Microb Genom 2018; 4:e000205
    [Google Scholar]
  64. Lee RS, Seemann T, Heffernan H, Kwong JC, Gonçalves da Silva A et al. Genomic epidemiology and antimicrobial resistance of Neisseria gonorrhoeae in New Zealand. J Antimicrob Chemother 2018; 73:353–364 [View Article][PubMed]
    [Google Scholar]
  65. Williamson DA, Chow EPF, Gorrie CL, Seemann T, Ingle DJ et al. Bridging of Neisseria gonorrhoeae lineages across sexual networks in the HIV pre-exposure prophylaxis era. Nat Commun 2019; 10:3988 [View Article][PubMed]
    [Google Scholar]
  66. Grad YH, Kirkcaldy RD, Trees D, Dordel J, Harris SR et al. Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study. Lancet Infect Dis 2014; 14:220–226 [View Article][PubMed]
    [Google Scholar]
  67. Martin I, Sawatzky P, Liu G, Allen V, Lefebvre B et al. Antimicrobial susceptibilities and distribution of sequence types of Neisseria gonorrhoeae isolates in Canada: 2010. Can J Microbiol 2013; 59:671–678 [View Article][PubMed]
    [Google Scholar]
  68. Gose S, Nguyen D, Lowenberg D, Samuel M, Bauer H et al. Neisseria gonorrhoeae and extended-spectrum cephalosporins in California: surveillance and molecular detection of mosaic penA. BMC Infect Dis 2013; 13:570 [View Article][PubMed]
    [Google Scholar]
  69. Shimuta K, Unemo M, Nakayama S, Morita-Ishihara T, Dorin M et al. Antimicrobial resistance and molecular typing of Neisseria gonorrhoeae isolates in Kyoto and Osaka, Japan, 2010 to 2012: intensified surveillance after identification of the first strain (H041) with high-level ceftriaxone resistance. Antimicrob Agents Chemother 2013; 57:5225–5232 [View Article][PubMed]
    [Google Scholar]
  70. Gianecini RA, Golparian D, Zittermann S, Litvik A, Gonzalez S et al. Genome-based epidemiology and antimicrobial resistance determinants of Neisseria gonorrhoeae isolates with decreased susceptibility and resistance to extended-spectrum cephalosporins in Argentina in 2011-16. J Antimicrob Chemother 2019; 74:1551–1559 [View Article][PubMed]
    [Google Scholar]
  71. Chen SC, Yin YP, Dai XQ, Unemo M, Chen XS. First nationwide study regarding ceftriaxone resistance and molecular epidemiology of Neisseria gonorrhoeae in China. J Antimicrob Chemother 2016; 71:92–99 [View Article][PubMed]
    [Google Scholar]
  72. Chisholm SA, Unemo M, Quaye N, Johansson E, Cole MJ et al. Molecular epidemiological typing within the European gonococcal antimicrobial resistance surveillance programme reveals predominance of a multidrug-resistant clone. Euro Surveill 2013; 18:20358[PubMed]
    [Google Scholar]
  73. Młynarczyk-Bonikowska B, Majewska A, Malejczyk M, Młynarczyk G, Majewski S. Multiresistant Neisseria gonorrhoeae: a new threat in second decade of the XXI century. Med Microbiol Immunol 2020; 209:95–108 [View Article][PubMed]
    [Google Scholar]
  74. Schürch AC, Arredondo-Alonso S, Willems RJL, Goering RV. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin Microbiol Infect 2018; 24:350–354 [View Article][PubMed]
    [Google Scholar]
  75. Macedo R, Pinto M, Borges V, Nunes A, Oliveira O et al. Evaluation of a gene-by-gene approach for prospective whole-genome sequencing-based surveillance of multidrug resistant Mycobacterium tuberculosis . Tuberculosis 2019; 115:81–88 [View Article][PubMed]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000481
Loading
/content/journal/mgen/10.1099/mgen.0.000481
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error