1887

Abstract

Carbapenem-resistant (CRKP) remains a major clinical pathogen and public health threat with few therapeutic options. The mobilome, resistome, methylome, virulome and phylogeography of CRKP in South Africa and globally were characterized. CRKP collected in 2018 were subjected to antimicrobial susceptibility testing, screening by multiplex PCR, genotyping by repetitive element palindromic (REP)-PCR, plasmid size, number, incompatibility and mobility analyses, and PacBio’s SMRT sequencing (=6). There were 56 multidrug-resistant CRKP, having -like and carbapenemases on self-transmissible IncF, A/C, IncL/M and IncX plasmids endowed with prophages, , resistance islands, and type I and II restriction modification systems (RMS). Plasmids and clades detected in this study were respectively related to globally established/disseminated plasmids clades/clones, evincing transboundary horizontal and vertical dissemination. Reduced susceptibility to colistin occurred in 23 strains. Common clones included ST307, ST607, ST17, ST39 and ST3559. IncFII virulent plasmid replicon was present in 56 strains. Whole-genome sequencing of six strains revealed least 41 virulence genes, extensive ompK36 mutations, and four different K- and O-loci types: KL2, KL25, KL27, KL102, O1, O2, O4 and O5. Types I, II and III RMS, conferring m6A (GTC, GTGNNNNNNTTG, CANNNNNNCATC motifs) and m4C (CWGG) modifications on chromosomes and plasmids, were found. The nature of plasmid-mediated, clonal and multi-clonal dissemination of bla-like and bla mirrors epidemiological trends observed for closely related plasmids and sequence types internationally. Worryingly, the presence of both and in the same isolates was observed. Plasmid-mediated transmission of RMS, virulome and prophages influence bacterial evolution, epidemiology, pathogenicity and resistance, threatening infection treatment. The influence of RMS on antimicrobial and bacteriophage therapy needs urgent investigation.

Funding
This study was supported by the:
  • National Health Laboratory Service
    • Principle Award Recipient: Nontombi M Mbelle
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000474
2020-11-10
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/12/mgen000474.html?itemId=/content/journal/mgen/10.1099/mgen.0.000474&mimeType=html&fmt=ahah

References

  1. Friedlaender C. Ueber die Schizomyceten bei Der acuten fibrösen Pneumonie. Arch für Pathol Anat und Physiol und für Klin Med 1882; 87:319–324
    [Google Scholar]
  2. Ashurst J, Dawson A. Klebsiella pneumonia Treasure Island: StatPearls Publishing; 2018
    [Google Scholar]
  3. Jondle CN, Gupta K, Mishra BB, Sharma J. Klebsiella pneumoniae infection of murine neutrophils impairs their efferocytic clearance by modulating cell death machinery. PLOS Pathog 2018; 14:e1007338
    [Google Scholar]
  4. Osei Sekyere J, Mensah E. Molecular epidemiology and mechanisms of antibiotic resistance in Enterococcus spp., Staphylococcus spp., and Streptococcus spp. in Africa: a systematic review from a one health perspective. Ann N Y Acad Sci 2020; 1465:29–58
    [Google Scholar]
  5. Kidd TJ, Mills G, Sá-Pessoa J, Dumigan A, Frank CG et al. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Mol Med 2017; 9:430–447 [View Article][PubMed]
    [Google Scholar]
  6. Singh N. How often are antibiotic-resistant bacteria Said to "Evolve" in the News?. PLoS One 2016; 11:e0150396
    [Google Scholar]
  7. Dodd MC. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. J Environ Monit 2012; 14:1754
    [Google Scholar]
  8. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 2017; 41:252–275
    [Google Scholar]
  9. Huang W, Wang G, Sebra R, Zhuge J, Yin C et al. Emergence and Evolution of Multidrug-Resistant Klebsiella pneumoniae with both bla KPC and bla CTX-M Integrated in the Chromosome. Antimicrob Agents Chemother 2017; 61: 27 06 2017 [View Article][PubMed]
    [Google Scholar]
  10. Osei Sekyere J, Amoako DG. Carbonyl cyanide m-Chlorophenylhydrazine (CCCP) reverses resistance to colistin, but not to carbapenems and tigecycline in multidrug-resistant Enterobacteriaceae . Front Microbiol 2017; 8:228
    [Google Scholar]
  11. Zhong H, Zhang S, Pan H, Cai T. Influence of induced ciprofloxacin resistance on efflux pump activity of Klebsiella pneumoniae . J Zhejiang Univ Sci B 2013; 14:837
    [Google Scholar]
  12. Ryu S, Klein EY, Chun BC. Temporal association between antibiotic use and resistance in Klebsiella pneumoniae at a tertiary care hospital. Antimicrob Resist Infect Control 2018; 7:83
    [Google Scholar]
  13. Mbelle NM, Feldman C, Sekyere JO, Maningi NE, Modipane L et al. Pathogenomics and evolutionary epidemiology of multi-drug resistant clinical Klebsiella pneumoniae isolated from Pretoria, South Africa. Sci Rep 2020; 10:1–17 [View Article]
    [Google Scholar]
  14. Lin Y-T, Su C-F, Chuang C, Lin J-C, Lu P-L et al. Appropriate treatment for bloodstream infections due to carbapenem-resistant Klebsiella pneumoniae and Escherichia coli: a nationwide multicenter study in Taiwan. Open Forum Infect Dis 2019; 6: [View Article]
    [Google Scholar]
  15. Kitchel B, Rasheed JK, Endimiani A, Hujer AM, Anderson KF et al. Genetic factors associated with elevated carbapenem resistance in KPC-producing Klebsiella pneumoniae . Antimicrob Agents Chemother 2010; 54:4201–4207 [View Article][PubMed]
    [Google Scholar]
  16. Osei Sekyere J, Maningi NE, Modipane L, Mbelle NM. Emergence of mcr-9.1 in ESBL-producing clinical Enterobacteriaceae in Pretoria, South Africa: global evolutionary phylogenomics. Resistome and Mobilome mSystems 2020; 5:e00148–20
    [Google Scholar]
  17. Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr 2016; 4:2
    [Google Scholar]
  18. Hamzaoui Z, Ocampo-Sosa A, Fernandez Martinez M, Landolsi S, Ferjani S et al. Role of association of OmpK35 and OmpK36 alteration and blaESBL and/or blaAmpC genes in conferring carbapenem resistance among non-carbapenemase-producing Klebsiella pneumoniae . Int J Antimicrob Agents 2018; 52:898–905 [View Article][PubMed]
    [Google Scholar]
  19. Lowe M, Kock MM, Coetzee J, Hoosien E, Peirano G et al. Klebsiella pneumoniae ST307 with blaOXA-181, South Africa, 2014-2016. Emerg Infect Dis 2019; 25:739–747 [View Article][PubMed]
    [Google Scholar]
  20. Pedersen T, Sekyere JO, Govinden U, Moodley K, Sivertsen A et al. Spread of plasmid-encoded NDM-1 and GES-5 carbapenemases among extensively drug-resistant and Pandrug-Resistant clinical Enterobacteriaceae in Durban, South Africa. Antimicrob Agents Chemother 2018; 62:e02178–17 [View Article][PubMed]
    [Google Scholar]
  21. Zhan L, Wang S, Guo Y, Jin Y, Duan J et al. Outbreak by Hypermucoviscous Klebsiella pneumoniae ST11 Isolates with Carbapenem Resistance in a Tertiary Hospital in China. Front Cell Infect Microbiol 2017; 7:182 [View Article][PubMed]
    [Google Scholar]
  22. Ferreira RL, da Silva BCM, Rezende GS, Nakamura-Silva R, Pitondo-Silva A et al. High Prevalence of Multidrug-Resistant Klebsiella pneumoniae Harboring Several Virulence and β-Lactamase Encoding Genes in a Brazilian Intensive Care Unit. Front Microbiol 2018; 9:3198 [View Article][PubMed]
    [Google Scholar]
  23. Zhang Y, Zeng J, Liu W, Zhao F, Hu Z et al. Emergence of a hypervirulent carbapenem-resistant Klebsiella pneumoniae isolate from clinical infections in China. J Infect 2015; 71:553–560 [View Article][PubMed]
    [Google Scholar]
  24. Nava RG, Oliveira-Silva M, Nakamura-Silva R, Pitondo-Silva A, Vespero EC. New sequence type in multidrug-resistant Klebsiella pneumoniae harboring the blaNDM-1-encoding gene in Brazil. Int J Infect Dis 2019; 79:101–103
    [Google Scholar]
  25. Sidjabat H, Nimmo GR, Walsh TR, Binotto E, Htin A et al. Carbapenem resistance in Klebsiella pneumoniae due to the new Delhi metallo-β-lactamase. Clin Infect Dis 2011; 52:481–484 [View Article][PubMed]
    [Google Scholar]
  26. Osei Sekyere J, Govinden U, Essack S. The molecular epidemiology and genetic environment of carbapenemases detected in Africa. Microb Drug Resist 2015; 22:59–68
    [Google Scholar]
  27. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2011; 17:
    [Google Scholar]
  28. Somboro AM, Osei Sekyere J, Amoako DG, Essack SY, Bester LA. Diversity and proliferation of metallo-β-lactamases: a clarion call for clinically effective metallo-β-lactamase inhibitors. Appl Environ Microbiol AEM 2018; 27:00698–18
    [Google Scholar]
  29. Somboro AM, Amoako DG, Osei Sekyere J, Kumalo HM, Khan R et al. 1,4,7-Triazacyclononane Restores the Activity of β-Lactam Antibiotics against Metallo-β-Lactamase-Producing Enterobacteriaceae: Exploration of Potential Metallo-β-Lactamase Inhibitors. Appl Environ Microbiol 2019; 85: 01 02 2019 [View Article][PubMed]
    [Google Scholar]
  30. Kopotsa K, Osei Sekyere J, Mbelle NM. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: a review. Ann New 2019; 1457:61–91
    [Google Scholar]
  31. Mbelle NM, Feldman C, Osei Sekyere J, Maningi NE, Modipane L et al. The resistome, mobilome, Virulome and phylogenomics of multidrug-resistant Escherichia coli clinical isolates from Pretoria, South Africa. Sci Rep 2019; 9:1–43 [View Article]
    [Google Scholar]
  32. Skálová A. Molecular characterization of OXA-48-like-producing Enterobacteriaceae in the Czech Republic: evidence for horizontal transfer of pOXA-48-like plasmids. Antimicrob Agents Chemother 201601889–16
    [Google Scholar]
  33. Power K, Wang J, Karczmarczyk M, Crowley B, Cotter M et al. Molecular analysis of OXA-48-carrying conjugative IncL/M-like plasmids in clinical isolates of Klebsiella pneumoniae in Ireland. Microb Drug Resist 2014; 20:270–274 [View Article][PubMed]
    [Google Scholar]
  34. Bonnin RA, Nordmann P, Carattoli A, Poirel L. Comparative genomics of IncL/M-type plasmids: evolution by acquisition of resistance genes and insertion sequences. Antimicrob Agents Chemother 2013; 57:674–676
    [Google Scholar]
  35. Chen L, Chavda KD, Melano RG, Hong T, Rojtman AD et al. Molecular survey of the blaKPC-harboring IncFIA plasmids in New Jersey and new York hospitals. Antimicrob Agents Chemother 2014; 58:2289–2294 [View Article][PubMed]
    [Google Scholar]
  36. Papagiannitsis CC, Di Pilato V, Giani T, Giakkoupi P, Riccobono E et al. Characterization of KPC-encoding plasmids from two endemic settings, Greece and Italy. J Antimicrob Chemother 2016; 71:2824–2830 [View Article][PubMed]
    [Google Scholar]
  37. Huang T-W, Chen T-L, Chen Y-T, Lauderdale T-L, Liao T-L et al. Copy number change of the NDM-1 sequence in a multidrug-resistant Klebsiella pneumoniae clinical isolate. PLoS One 2013; 8:e62774 [View Article]
    [Google Scholar]
  38. Harada S, Doia Y. Hypervirulent Klebsiella pneumoniae: a call for consensus definition and international collaboration. J Clin Microbiol 2018; 56: [View Article]
    [Google Scholar]
  39. Shen D et al. Emergence of a multidrug-resistant hypervirulent Klebsiella pneumoniae sequence type 23 strain with a rare blaCTX-M-24-harboring virulence plasmid. Antimicrob Agents Chemother 2019; 63:
    [Google Scholar]
  40. Li B et al. Colistin resistance gene mcr-1 mediates cell permeability and resistance to hydrophobic antibiotics. Front Microbiol 2020; 10:
    [Google Scholar]
  41. Fang CT, Yi WC, Shun CT, Tsai SF. DNA adenine methylation modulates pathogenicity of Klebsiella pneumoniae genotype K1. J Microbiol Immunol Infect 2017; 50:471–477
    [Google Scholar]
  42. Hiraoka S et al. Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community. Nat. Commun 2019; 10:
    [Google Scholar]
  43. Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A et al. The epigenomic landscape of prokaryotes. PLoS Genet 2016; 12:e1005854 [View Article][PubMed]
    [Google Scholar]
  44. Asante J, Osei Sekyere J. Understanding antimicrobial discovery and resistance from a metagenomic and metatranscriptomic perspective: advances and applications. Environ Microbiol Rep 2019; 11:62–86
    [Google Scholar]
  45. Beaulaurier J, Zhu S, Deikus G, Mogno I, Zhang X-S et al. Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nat Biotechnol 2018; 36:61–69 [View Article][PubMed]
    [Google Scholar]
  46. Anonymous Sixth baby dies in Klebsiella outbreak. news24 2020
    [Google Scholar]
  47. Anonymous Six babies have died from hospital superbug. Timeslive. Available at https://www.timeslive.co.za/news/south-africa/2018-09-16-six-babies-have-died-from-hospital-superbug (Accessed: 19th June 2020); 2018
  48. Jacobson RK et al. Molecular characterisation and epidemiological investigation of an outbreak of blaOXA-181 carbapenemase-producing isolates of Klebsiella pneumoniae in South Africa. S Afr Med J 2015; 105:1030–1035
    [Google Scholar]
  49. Osei Sekyere J. Current state of resistance to antibiotics of Last-Resort in South Africa: a review from a public health perspective. Front Public Heal 2016; 4:209
    [Google Scholar]
  50. Perovic O et al. Antimicrobial resistance surveillance in the South African private sector report for 2016. South African J Infect Dis 2018; 33:114–117
    [Google Scholar]
  51. Habeeb MA, Haque A, Nematzadeh S, Iversen A, Giske CG. High prevalence of 16S rRNA methylase RmtB among CTX-M extended-spectrum β-lactamase-producing Klebsiella pneumoniae from Islamabad, Pakistan. Int J Antimicrob Agents 2013; 41:524–526
    [Google Scholar]
  52. Ocampo AM, Chen L, Cienfuegos AV, Roncancio G, Chavda KD et al. A two-year surveillance in five Colombian tertiary care hospitals reveals high frequency of Non-CG258 clones of carbapenem-resistant Klebsiella pneumoniae with distinct clinical characteristics. Antimicrob Agents Chemother 2016; 60:332–342 [View Article][PubMed]
    [Google Scholar]
  53. Novović K, Trudić A, Brkić S, Vasiljević Z, Kojić M et al. Molecular epidemiology of colistin-resistant, carbapenemase-producing Klebsiella pneumoniae in Serbia from 2013 to 2016. Antimicrob Agents Chemother 2017; 61: 24 04 2017 [View Article][PubMed]
    [Google Scholar]
  54. Bocanegra-Ibarias P, Garza-González E, Morfín-Otero R, Barrios H, Villarreal-Treviño L et al. Molecular and microbiological report of a hospital outbreak of NDM-1-carrying Enterobacteriaceae in Mexico. PLoS One 2017; 12:e0179651 [View Article][PubMed]
    [Google Scholar]
  55. Saavedra SY, Diaz L, Wiesner M, Correa A, Arévalo SA et al. Genomic and Molecular Characterization of Clinical Isolates of Enterobacteriaceae Harboring mcr-1 in Colombia, 2002 to 2016. Antimicrob Agents Chemother 2017; 61: 22 11 2017 [View Article][PubMed]
    [Google Scholar]
  56. Peltier F, Choquet M, Decroix V, Adjidé CC, Castelain S et al. Characterization of a multidrug-resistant Klebsiella pneumoniae ST607-K25 clone responsible for a nosocomial outbreak in a neonatal intensive care unit. J Med Microbiol 2019; 68:67–76 [View Article][PubMed]
    [Google Scholar]
  57. Ekwanzala MD, Budeli P, Dewar JB, Kamika I, Momba MNB. Draft Genome Sequences of Novel Sequence Type 3559 Carbapenem-Resistant Klebsiella pneumoniae Isolates Recovered from the Environment. Microbiol Resour Announc 2019; 8:
    [Google Scholar]
  58. Lynch T, Chen L, Peirano G, Gregson DB, Church DL et al. Molecular evolution of a Klebsiella pneumoniae ST278 isolate harboring blaNDM-7 and involved in nosocomial transmission. J Infect Dis 2016; 214:798–806 [View Article][PubMed]
    [Google Scholar]
  59. Shankar C, Kumar S, Venkatesan M, Veeraraghavan B. Emergence of ST147 Klebsiella pneumoniae carrying blaNDM-7 on IncA/C2 with ompK35 and OmpK36 mutations in India. J Infect Public Health 2019; 12:741–743
    [Google Scholar]
  60. Chou A, Roa M, Evangelista MA, Sulit AK, Lagamayo E et al. Emergence of Klebsiella pneumoniae ST273 Carrying bla NDM-7 and ST656 Carrying bla NDM-1 in Manila, Philippines. Microb Drug Resist 2016; 22:585–588 [View Article][PubMed]
    [Google Scholar]
  61. Lee C-S, Vasoo S, Hu F, Patel R, Doi Y. Klebsiella pneumoniae ST147 coproducing NDM-7 carbapenemase and RmtF 16S rRNA methyltransferase in Minnesota. J Clin Microbiol 2014; 52:4109–4110
    [Google Scholar]
  62. Moussounda M, Diene SM, Dos Santos S, Goudeau A, François P et al. Emergence of blaNDM-7-Producing Enterobacteriaceae in Gabon, 2016. Emerg Infect Dis 2017; 23:356–358 [View Article][PubMed]
    [Google Scholar]
  63. Tuon FF, Graf ME, Merlini A, Rocha JL, Stallbaum S et al. Risk factors for mortality in patients with ventilator-associated pneumonia caused by carbapenem-resistant Enterobacteriaceae . Braz J Infect Dis 2017; 21:1–6 [View Article][PubMed]
    [Google Scholar]
  64. Pan YJ, Lin T-L, Chen C-T, Chen Y-Y, Hsieh P-F et al. Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Sci Rep 2015; 5:15573 [View Article][PubMed]
    [Google Scholar]
  65. Gordon D. The diversity of lipopolysaccharide (o) and capsular polysaccharide (K) antigens of invasive Klebsiella pneumoniae in a Multi-Country collection. Front Microbiol 2020; 11:
    [Google Scholar]
  66. Li B, Zhao Y, Liu C, Chen Z, Zhou D. Molecular pathogenesis of Klebsiella pneumoniae . Future Microbiol 2014; 9:1071–1081
    [Google Scholar]
  67. Liu B-T et al. Characteristics of carbapenem-resistant Enterobacteriaceae in ready-to-eat vegetables in China. Front Microbiol 2018; 9:1147
    [Google Scholar]
  68. Mei Y et al. Virulence and genomic feature of a virulent Klebsiella pneumoniae sequence type 14 strain of serotype K2 harboring blaNDM–5 in China. Front Microbiol 2017; 8:
    [Google Scholar]
  69. Dong N, Yang X, Zhang R, Chan EW-C, Chen S. Tracking microevolution events among ST11 carbapenemase-producing hypervirulent Klebsiella pneumoniae outbreak strains. Emerg Microbes Infect 2018; 7:146
    [Google Scholar]
  70. Korotetskiy IS. Differential gene expression and alternation of patterns of DNA methylation in the multidrug resistant strain Escherichia coli ATCC BAA-196 caused by iodine-containing nano-micelle drug FS-1 that induces antibiotic resistance reversion. bioRxiv 2020
    [Google Scholar]
  71. Decano AG. Plasmids shape the diverse accessory resistomes of Escherichia coli ST131. bioRxiv 2020
    [Google Scholar]
  72. Sugawara Y, Akeda Y, Sakamoto N, Takeuchi D, Motooka D et al. Genetic characterization of blaNDM-harboring plasmids in carbapenem-resistant Escherichia coli from Myanmar. PLoS One 2017; 12:e0184720 [View Article][PubMed]
    [Google Scholar]
  73. Stoesser N, Giess A, Batty EM, Sheppard AE, Walker AS et al. Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae isolates from neonatal infections in a Nepali Hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting. Antimicrob Agents Chemother 2014; 58:7347–7357 [View Article][PubMed]
    [Google Scholar]
  74. Du H, Chen L, Chavda KD, Pandey R, Zhang H et al. Genomic characterization of Enterobacter cloacae isolates from China that Coproduce KPC-3 and NDM-1 carbapenemases. Antimicrob Agents Chemother 2016; 60:2519–2523 [View Article][PubMed]
    [Google Scholar]
  75. Poirel L, Aires-de-Sousa M, Kudyba P, Kieffer N, Nordmann P. Screening and characterization of multidrug-resistant gram-negative bacteria from a remote African area, São Tomé and Príncipe. Antimicrob Agents Chemother 2018; 62:e01021–18
    [Google Scholar]
  76. Roer L, Overballe-Petersen S, Hansen F, Schønning K, Wang M et al. Escherichia coli sequence type 410 is causing new International high-risk clones. mSphere 2018; 3:e00337-18–18 [View Article][PubMed]
    [Google Scholar]
  77. Dortet L, Flonta M, Boudehen Y-M, Creton E, Bernabeu S et al. Dissemination of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa in Romania. Antimicrob Agents Chemother 2015; 59:7100–7103 [View Article][PubMed]
    [Google Scholar]
  78. Lomonaco S, Crawford MA, Lascols C, Timme RE, Anderson K et al. Resistome of carbapenem- and colistin-resistant Klebsiella pneumoniae clinical isolates. PLoS One 2018; 13:e0198526 [View Article][PubMed]
    [Google Scholar]
  79. Muggeo A, Guillard T, Klein F, Reffuveille F, François C et al. Spread of Klebsiella pneumoniae ST395 non-susceptible to carbapenems and resistant to fluoroquinolones in north-eastern France. J Glob Antimicrob Resist 2018; 13:98–103 [View Article][PubMed]
    [Google Scholar]
  80. Bedenić B, Slade M, Starčević Lidija Žele, Sardelić S, Vranić-Ladavac M et al. Epidemic spread of OXA-48 beta-lactamase in Croatia. J Med Microbiol 2018; 67:1031–1041 [View Article][PubMed]
    [Google Scholar]
  81. Conlan S et al. Plasmid dynamics in KPC-Positive <span class="named-content genus-species" id="named-content-1">Klebsiella pneumoniae</span> during long-term patient colonization. mBio 2016; 7:e00742–16
    [Google Scholar]
  82. Ashcroft MM et al. Strain and lineage-level methylome heterogeneity in the multi-drug resistant pathogenic Escherichia coli ST101 clone. bioRxiv 2020
    [Google Scholar]
  83. Huang Y, Li G, Li M, Wang Y, Yang Z. The high-risk KPC-producing Klebsiella pneumoniae lack type I R-M systems. Int J Antimicrob Agents 2020; 106050:
    [Google Scholar]
  84. Bao J, Wu N, Zeng Y, Chen L, Li L et al. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae . Emerg Microbes Infect 2020; 9:771–774 [View Article][PubMed]
    [Google Scholar]
  85. CLSI & Clinical and Laboratory Standards Institute (CLSI) Performance standards for Antimicrobial Susceptibility Testing. Twenty-Seventh Informational Supplement M100-S27 USA: CLSI, Wayne, PA; 2019
    [Google Scholar]
  86. Iraz M, Özad Düzgün A, Sandallı C, Doymaz MZ, Akkoyunlu Y et al. Distribution of β-lactamase genes among carbapenem-resistant Klebsiella pneumoniae strains isolated from patients in turkey. Ann Lab Med 2015; 35:595–601 [View Article][PubMed]
    [Google Scholar]
  87. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL et al. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 2005; 63:219–228 [View Article][PubMed]
    [Google Scholar]
  88. Villa L, García-Fernández A, Fortini D, Carattoli A. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother 2010; 65:2518–2529
    [Google Scholar]
  89. Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE-a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 2015; 43:
    [Google Scholar]
  90. Tatusova T et al. NCBI prokaryotic genome annotation pipeline; 2016; 446614–6624
  91. Larsen M V et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 2012; 50:1355–1361
    [Google Scholar]
  92. Zankari E et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644
    [Google Scholar]
  93. Ruan Z, Feng Y. BacWGSTdb, a database for genotyping and source tracking bacterial pathogens. Nucleic Acids Res 2016; 44:682–687
    [Google Scholar]
  94. Carattoli A et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903
    [Google Scholar]
  95. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–D36
    [Google Scholar]
  96. Arndt D et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21
    [Google Scholar]
  97. Wyres KL, Holt KE. Klebsiella pneumoniae population genomics and antimicrobial-resistant clones. Trends in Microbiology 2016; 24:
    [Google Scholar]
  98. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394–1403
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000474
Loading
/content/journal/mgen/10.1099/mgen.0.000474
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Supplementary material 4

EXCEL

Supplementary material 5

EXCEL

Supplementary material 6

EXCEL

Supplementary material 7

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error