1887

Abstract

MA1002 was exposed to ultraviolet radiation to generate mutants with enhanced biofilm production. Two strains (nos 5 and 6) were then selected based on their high biofilm formation, as well as their possession of higher concentrations of extracellular matrix components (eDNA, protein and saccharides) than the wild-type (WT). Genomic sequencing revealed the presence of large genome deletions in a secondary chromosome in the mutants. Expression analyses of the WT and mutant strains indicated the upregulation of genes associated with exopolysaccharide synthesis and stress response. The mutant strains showed high mortality in glucose-supplemented (TYG) medium; however, cell death and biofilm formation were not increased in mutant cells grown under acetate- or glyoxylate-added media, suggesting that metabolic toxicity during glucose metabolism induced a high rate of cell death but improved biofilm formation in mutant strains. In damaged cells, eDNAs contributed to the enhanced biofilm formation of .

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000464
2020-11-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/12/mgen000464.html?itemId=/content/journal/mgen/10.1099/mgen.0.000464&mimeType=html&fmt=ahah

References

  1. Slade D, Radman M. Oxidative stress resistance in Deinococcus radiodurans . Microbiol Mol Biol Rev 2011; 75:133–191 [View Article][PubMed]
    [Google Scholar]
  2. Anderson AW, Nordon HC, Cain RF, Parrish G, Duggan D. Studies on a radio-resistant Micrococcus. Isolation, morphology, cultural characteristics, and resistance to γ-radiation. Food Technol 1956; 10:575–578
    [Google Scholar]
  3. Ujaoney AK, Padwal MK, Basu B. Proteome dynamics during post-desiccation recovery reveal convergence of desiccation and gamma radiation stress response pathways in Deinococcus radiodurans . Biochim Biophys Acta Proteins Proteom 2017; 1865:1215–1226 [View Article][PubMed]
    [Google Scholar]
  4. Udupa KS, O'Cain PA, Mattimore V, Battista JR. Novel ionizing radiation-sensitive mutants of Deinococcus radiodurans . J Bacteriol 1994; 176:7439–7446 [View Article][PubMed]
    [Google Scholar]
  5. Zhang YQ, Sun CH, Li WJ, Yu LY, Zhou JQ et al. Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol 2007; 57:370–375 [View Article][PubMed]
    [Google Scholar]
  6. Donlan RM. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 2001; 33:1387–1392 [View Article][PubMed]
    [Google Scholar]
  7. López D, Vlamakis H, Kolter R. Biofilms. Cold Spring Harb Perspect Biol 2010; 2:a000398 [View Article][PubMed]
    [Google Scholar]
  8. Dragoš A, Kovács Ákos T. The peculiar functions of the bacterial extracellular matrix. Trends Microbiol 2017; 25:257–266 [View Article][PubMed]
    [Google Scholar]
  9. Panitz C, Frösler J, Wingender J, Flemming HC, Rettberg P. Tolerances of Deinococcus geothermalis biofilms and planktonic cells exposed to space and simulated martian conditions in low earth orbit for almost two years. Astrobiology 2019; 19:979–994 [View Article][PubMed]
    [Google Scholar]
  10. Frösler J, Panitz C, Wingender J, Flemming HC, Rettberg P. Survival of Deinococcus geothermalis in biofilms under desiccation and simulated space and martian conditions. Astrobiology 2017; 17:431–447 [View Article][PubMed]
    [Google Scholar]
  11. Peltola M, Neu TR, Raulio M, Kolari M, Salkinoja-Salonen MS. Architecture of Deinococcus geothermalis biofilms on glass and steel: a lectin study. Environ Microbiol 2008; 10:1752–1759 [View Article][PubMed]
    [Google Scholar]
  12. Manobala T, Shukla SK, Rao TS, Kumar MD. A new uranium bioremediation approach using radio-tolerant Deinococcus radiodurans biofilm. J Biosci 2019; 44:122 [View Article][PubMed]
    [Google Scholar]
  13. Krisko A, Radman M. Biology of extreme radiation resistance: the way of Deinococcus radiodurans . Cold Spring Harb Perspect Biol 2013; 5:pii:a012765 [View Article][PubMed]
    [Google Scholar]
  14. Theodorakopoulos N, Bachar D, Christen R, Alain K, Chapon V. Exploration of Deinococcus-Thermus molecular diversity by novel group-specific PCR primers. Microbiologyopen 2013; 2:862–872 [View Article][PubMed]
    [Google Scholar]
  15. Park C, Jung HS, Park S, Jeon CO, Park W. Dominance of gas-eating, biofilm-forming Methylobacterium species in the evaporator cores of automobile air-conditioning Systems. mSphere 2020; 5:e00761–19 [View Article][PubMed]
    [Google Scholar]
  16. Kim DU, Lee H, Lee S, Park S, Yoon JH et al. Deinococcus aluminii sp. nov., isolated from an automobile air conditioning system. Int J Syst Evol Microbiol 2018; 68:776–781 [View Article][PubMed]
    [Google Scholar]
  17. Kim DU, Lee H, Lee S, Park S, Yoon JH et al. Deinococcus multiflagellatus sp. nov., isolated from a car air-conditioning system. Antonie van Leeuwenhoek 2018; 111:619–627 [View Article][PubMed]
    [Google Scholar]
  18. Kim DU, Lee H, Lee JH, Ahn JH, Lim S et al. Deinococcus metallilatus sp. nov. and Deinococcus carri sp. nov., isolated from a car air-conditioning system. Int J Syst Evol Microbiol 2015; 65:3175–3182 [View Article][PubMed]
    [Google Scholar]
  19. Makarova KS, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A et al. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS One 2007; 2:e955 [View Article][PubMed]
    [Google Scholar]
  20. Brim H, Venkateswaran A, Kostandarithes HM, Fredrickson JK, Daly MJ. Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 2003; 69:4575–4582 [View Article][PubMed]
    [Google Scholar]
  21. Eom HJ, Park W. Inhibitory effect of taurine on biofilm formation during alkane degradation in Acinetobacter oleivorans DR1. Microb Ecol 2017; 74:821–831 [View Article][PubMed]
    [Google Scholar]
  22. Chiba A, Sugimoto S, Sato F, Hori S, Mizunoe Y. A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability. Microb Biotechnol 2015; 8:392–403 [View Article][PubMed]
    [Google Scholar]
  23. Kim HJ, Shin B, Lee YS, Park W. Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7. Appl Microbiol Biotechnol 2017; 101:6551–6561 [View Article][PubMed]
    [Google Scholar]
  24. Park C, Shin B, Jung J, Lee Y, Park W. Metabolic and stress responses of Acinetobacter oleivorans DR1 during long-chain alkane degradation. Microb Biotechnol 2017; 10:1809–1823 [View Article][PubMed]
    [Google Scholar]
  25. Chu EK, Kilic O, Cho H, Groisman A, Levchenko A. Self-induced mechanical stress can trigger biofilm formation in uropathogenic Escherichia coli . Nat Commun 2018; 9:4087 [View Article][PubMed]
    [Google Scholar]
  26. Ikehata H, Ono T. Significance of CpG methylation for solar UV-induced mutagenesis and carcinogenesis in skin. Photochem Photobiol 2007; 83:196–204 [View Article][PubMed]
    [Google Scholar]
  27. Ikehata H, Ono T. The mechanisms of UV mutagenesis. J Radiat Res 2011; 52:115–125 [View Article][PubMed]
    [Google Scholar]
  28. Lim S, Jung JH, Blanchard L, de Groot A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 2019; 43:19–52 [View Article][PubMed]
    [Google Scholar]
  29. Aliyu H, De Maayer P, Cowan D. The genome of the Antarctic polyextremophile Nesterenkonia sp. AN1 reveals adaptive strategies for survival under multiple stress conditions. FEMS Microbiol Ecol 2016; 92:fiw032 [View Article][PubMed]
    [Google Scholar]
  30. Ahn S, Jung J, Jang IA, Madsen EL, Park W. Role of glyoxylate shunt in oxidative stress response. J Biol Chem 2016; 291:11928–11938 [View Article][PubMed]
    [Google Scholar]
  31. Jeon JM, Lee HI, Sadowsky MJ, Sugawara M, Chang WS. Characterization of a functional role of the Bradyrhizobium japonicum isocitrate lyase in desiccation tolerance. Int J Mol Sci 2015; 16:16695–16709 [View Article][PubMed]
    [Google Scholar]
  32. Park C, Park W. Survival and energy producing strategies of alkane degraders under extreme conditions and their biotechnological potential. Front Microbiol 2018; 9:1081 [View Article][PubMed]
    [Google Scholar]
  33. Watanabe S, Yamaoka N, Takada Y, Fukunaga N. The cold-inducible ICl gene encoding thermolabile isocitrate lyase of a psychrophilic bacterium, Colwellia maris . Microbiology 2002; 148:2579–2589 [View Article][PubMed]
    [Google Scholar]
  34. Mohseni M, Abbaszadeh J, Nasrollahi OA. Radiation resistant of native Deinococcus spp. isolated from the Lout desert of Iran “the hottest place on Earth”. Int J Environ Sci . Technol 2014; 11:1939–1946
    [Google Scholar]
  35. Dong N, Li HR, Yuan M, Zhang XH, Yu Y. Deinococcus antarcticus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:331–335 [View Article][PubMed]
    [Google Scholar]
  36. Peng F, Zhang L, Luo X, Dai J, An H et al. Deinococcus xinjiangensis sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2009; 59:709–713 [View Article][PubMed]
    [Google Scholar]
  37. Feng J, Ma L, Nie J, Konkel ME, Lu X. Environmental stress-induced bacterial lysis and extracellular DNA release contribute to Campylobacter jejuni biofilm formation. Appl Environ Microbiol 2018; 84:e02068–17 [View Article][PubMed]
    [Google Scholar]
  38. Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat Commun 2016; 7:11220 [View Article][PubMed]
    [Google Scholar]
  39. Lin SM, Baek CY, Jung JH, Kim WS, Song HY et al. Antioxidant activities of an exopolysaccharide (DeinoPol) produced by the extreme radiation-resistant bacterium Deinococcus radiodurans . Sci Rep 2020; 10:55 [View Article][PubMed]
    [Google Scholar]
  40. Charaka VK, Misra HS. Functional characterization of the role of the chromosome I partitioning system in genome segregation in Deinococcus radiodurans . J Bacteriol 2012; 194:5739–5748 [View Article][PubMed]
    [Google Scholar]
  41. Kim J, Yeom J, Jeon CO, Park W. Intracellular 2-keto-3-deoxy-6-phosphogluconate is the signal for carbon catabolite repression of phenylacetic acid metabolism in Pseudomonas putida KT2440. Microbiology 2009; 155:2420–2428 [View Article][PubMed]
    [Google Scholar]
  42. Chen X, Schreiber K, Appel J, Makowka A, Fähnrich B et al. The Entner-Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants. Proc Natl Acad Sci U S A 2016; 113:5441–5446 [View Article][PubMed]
    [Google Scholar]
  43. Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF et al. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 2017; 41:S168–S200 [View Article][PubMed]
    [Google Scholar]
  44. Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015; 6:496 [View Article][PubMed]
    [Google Scholar]
  45. Devigne A, Ithurbide S, Bouthier de la Tour C, Passot F, Mathieu M et al. DdrO is an essential protein that regulates the radiation desiccation response and the apoptotic-like cell death in the radioresistant Deinococcus radiodurans bacterium. Mol Microbiol 2015; 96:1069–1084 [View Article][PubMed]
    [Google Scholar]
  46. Boling ME, Setlow JK. The resistance of Micrococcus radiodurans to ultraviolet radiation: III. Biochim Biophys Acta 1966; 123:26–33 [View Article][PubMed]
    [Google Scholar]
  47. Ibáñez de Aldecoa AL, Zafra O, González-Pastor JE. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front Microbiol 2017; 8:1390 [View Article][PubMed]
    [Google Scholar]
  48. Tahrioui A, Duchesne R, Bouffartigues E, Rodrigues S, Maillot O et al. Extracellular DNA release, quorum sensing, and PrrF1/F2 small RNAs are key players in Pseudomonas aeruginosa tobramycin-enhanced biofilm formation. NPJ Biofilms Microbiomes 2019; 5:15 [View Article][PubMed]
    [Google Scholar]
  49. Patra T, Koley H, Ramamurthy T, Ghose AC, Nandy RK. The Entner-Doudoroff pathway is obligatory for gluconate utilization and contributes to the pathogenicity of Vibrio cholerae . J Bacteriol 2012; 194:3377–3385 [View Article][PubMed]
    [Google Scholar]
  50. Chavarría M, Nikel PI, Pérez-Pantoja D, de Lorenzo V. The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol 2013; 15:1772–1785 [View Article][PubMed]
    [Google Scholar]
  51. Vegge CS, Jansen van Rensburg MJ, Rasmussen JJ, Maiden MCJ, Johnsen LG et al. Glucose metabolism via the Entner-Doudoroff pathway in Campylobacter: a rare trait that enhances survival and promotes biofilm formation in some isolates. Front Microbiol 2016; 7:7 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000464
Loading
/content/journal/mgen/10.1099/mgen.0.000464
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error