Geographically structured genomic diversity of non-human primate-infecting subsp. Open Access

Abstract

Many non-human primate species in sub-Saharan Africa are infected with subsp. , the bacterium causing yaws in humans. In humans, yaws is often characterized by lesions of the extremities and face, while subsp. causes venereal syphilis and is typically characterized by primary lesions on the genital, anal or oral mucosae. It remains unclear whether other subspecies found in humans also occur in non-human primates and how the genomic diversity of non-human primate subsp. lineages is distributed across hosts and space. We observed orofacial and genital lesions in sooty mangabeys () in Taï National Park, Côte d’Ivoire and collected swabs and biopsies from symptomatic animals. We also collected non-human primate bones from 8 species in Taï National Park and 16 species from 11 other sites across sub-Saharan Africa. Samples were screened for DNA using polymerase chain reactions (PCRs) and we used in-solution hybridization capture to sequence genomes. We generated three nearly complete genomes from biopsies and swabs and detected treponemal DNA in bones of six non-human primate species in five countries, allowing us to reconstruct three partial genomes. Phylogenomic analyses revealed that both orofacial and genital lesions in sooty mangabeys from Taï National Park were caused by subsp. . We showed that subsp. has infected non-human primates in Taï National Park for at least 28 years and has been present in two non-human primate species that had not been described as subsp. hosts in this ecosystem, western chimpanzees () and western red colobus (), complementing clinical evidence that started accumulating in Taï National Park in 2014. More broadly, simian subsp. strains did not form monophyletic clades based on host species or the symptoms caused, but rather clustered based on geography. Geographical clustering of subsp. genomes might be compatible with cross-species transmission of subsp. within ecosystems or environmental exposure, leading to the acquisition of closely related strains. Finally, we found no evidence for mutations that confer antimicrobial resistance.

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft (Award Project: LE 1813/14-1)
    • Principle Award Recipient: Fabian H. Leendertz
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000463
2020-10-30
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/11/mgen000463.html?itemId=/content/journal/mgen/10.1099/mgen.0.000463&mimeType=html&fmt=ahah

References

  1. Armelagos GJ, Zuckerman MK, Harper KN. The science behind pre-Columbian evidence of syphilis in Europe: research by documentary. Evol Anthropol 2012; 21:50–57 [View Article][PubMed]
    [Google Scholar]
  2. Lithgow KV, Hof R, Wetherell C, Phillips D, Houston S et al. A defined syphilis vaccine candidate inhibits pallidum. Nat Commun 2017; 8:1–10
    [Google Scholar]
  3. Giacani L, Lukehart SA. The endemic treponematoses. Clin Microbiol Rev 2014; 27:89–115 [View Article][PubMed]
    [Google Scholar]
  4. Marks M, Solomon AW, Mabey DC. Endemic treponemal diseases. Trans R Soc Trop Med Hyg 2014; 108:601–607 [View Article][PubMed]
    [Google Scholar]
  5. Čejková D, Zobaníková M, Chen L, Pospíšilová P, Strouhal M et al. Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. PLoS Negl Trop Dis 2012; 6:e1471 [View Article]
    [Google Scholar]
  6. Centurion-Lara A, Molini BJ, Godornes C, Sun E, Hevner K et al. Molecular differentiation of Treponema pallidum subspecies. J Clin Microbiol 2006; 44:3377–3380 [View Article][PubMed]
    [Google Scholar]
  7. Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One 2015; 10:e0143304 [View Article][PubMed]
    [Google Scholar]
  8. WHO First WHO report on neglected tropical diseases: working to overcome the global impact of neglected tropical diseases.; 2010
  9. Dyson L, Mooring EQ, Holmes A, Tildesley MJ, Marks M. Insights from quantitative and mathematical modelling on the proposed 2030 goals for yaws. Gates Open Res 2019; 3:1576 [View Article][PubMed]
    [Google Scholar]
  10. Chuma IS, Batamuzi EK, Collins DA, Fyumagwa RD, Hallmaier-Wacker LK et al. Widespread Treponema pallidum Infection in Nonhuman Primates, Tanzania. Emerg Infect Dis 2018; 24:1002–1009 [View Article][PubMed]
    [Google Scholar]
  11. Knauf S, Gogarten JF, Schuenemann VJ, De Nys HM, Düx A et al. Nonhuman primates across sub-Saharan Africa are infected with the yaws bacterium Treponema pallidum subsp. pertenue . Emerg Microbes Infect 2018; 7:1–4 [View Article]
    [Google Scholar]
  12. Zobaníková M, Strouhal M, Mikalová L, Cejková D, Ambrožová L et al. Whole genome sequence of the Treponema Fribourg-Blanc: unspecified simian isolate is highly similar to the yaws subspecies. PLoS Negl Trop Dis 2013; 7:e2172 [View Article][PubMed]
    [Google Scholar]
  13. Smith JL, David NJ, Indgin S, Israel CW, Levine BM et al. Neuro-ophthalmological study of late yaws and pinta. II. The Caracas project. Sex Transm Infect 1971; 47:226–251
    [Google Scholar]
  14. Lawton Smith J, Israel CW. Recovery of spirochagetes in the monkey by passive transfer from human late sero-negative syphilis. Br J Vener Dis 1968; 44:109–115 [View Article][PubMed]
    [Google Scholar]
  15. Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI et al. Pathways to zoonotic spillover. Nat Rev Microbiol 2017; 15:502–510 [View Article][PubMed]
    [Google Scholar]
  16. Chuma IS, Roos C, Atickem A, Bohm T, Anthony Collins D et al. Strain diversity of Treponema pallidum subsp. pertenue suggests rare interspecies transmission in African nonhuman primates. Sci Rep 2019; 9:14243 [View Article][PubMed]
    [Google Scholar]
  17. Gogarten JF, Düx A, Schuenemann VJ, Nowak K, Boesch C et al. Tools for opening new chapters in the book of Treponema pallidum evolutionary history. Clin Microbiol Infect 2016; 22:916–921 [View Article][PubMed]
    [Google Scholar]
  18. Calvignac-Spencer S, Merkel K, Kutzner N, Kühl H, Boesch C et al. Carrion fly-derived DNA as a tool for comprehensive and cost-effective assessment of mammalian biodiversity. Mol Ecol 2013; 22:915–924 [View Article][PubMed]
    [Google Scholar]
  19. Hoffmann C, Zimmermann F, Biek R, Kuehl H, Nowak K et al. Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest. Nature 2017; 548:82–86 [View Article][PubMed]
    [Google Scholar]
  20. Rohland N, Hofreiter M. Ancient DNA extraction from bones and teeth. Nat Protoc 2007; 2:1756–1762 [View Article][PubMed]
    [Google Scholar]
  21. Gamba C, Hanghøj K, Gaunitz C, Alfarhan AH, Alquraishi SA et al. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol Ecol Resour 2016; 16:459-69 [View Article][PubMed]
    [Google Scholar]
  22. Orlando L, Ginolhac A, Raghavan M, Vilstrup J, Rasmussen M et al. True single-molecule DNA sequencing of a pleistocene horse bone. Genome Res 2011; 21:1705–1719 [View Article][PubMed]
    [Google Scholar]
  23. Leslie DE, Azzato F, Karapanagiotidis T, Leydon J, Fyfe J. Development of a real-time PCR assay to detect Treponema pallidum in clinical specimens and assessment of the assay's performance by comparison with serological testing. J Clin Microbiol 2007; 45:93–96 [View Article][PubMed]
    [Google Scholar]
  24. Harper KN, Fyumagwa RD, Hoare R, Wambura PN, Coppenhaver DH et al. Treponema pallidum infection in the wild baboons of East Africa: distribution and genetic characterization of the strains responsible. PLoS One 2012; 7:e50882 [View Article][PubMed]
    [Google Scholar]
  25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  26. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  27. Peltzer A, Jäger G, Herbig A, Seitz A, Kniep C et al. EAGER: efficient ancient genome reconstruction. Genome Biol 2016; 17:60 [View Article][PubMed]
    [Google Scholar]
  28. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv 2013arXiv:1303.3997
    [Google Scholar]
  29. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article][PubMed]
    [Google Scholar]
  30. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28:1647–1649 [View Article][PubMed]
    [Google Scholar]
  31. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article][PubMed]
    [Google Scholar]
  32. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article][PubMed]
    [Google Scholar]
  33. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article][PubMed]
    [Google Scholar]
  34. Lefort V, Longueville J-E, Gascuel O. SMS: smart model selection in PhyML. Mol Biol Evol 2017; 34:2422–2424 [View Article][PubMed]
    [Google Scholar]
  35. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article][PubMed]
    [Google Scholar]
  36. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article][PubMed]
    [Google Scholar]
  37. Leaché AD, Banbury BL, Felsenstein J, de Oca AN-M, Stamatakis A. Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst Biol 2015; 64:1032–1047 [View Article][PubMed]
    [Google Scholar]
  38. Lewis PO. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 2001; 50:913–925 [View Article][PubMed]
    [Google Scholar]
  39. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol 2016; 2:vew007 [View Article][PubMed]
    [Google Scholar]
  40. Fourment M, Gibbs MJ. PATRISTIC: a program for calculating patristic distances and graphically comparing the components of genetic change. BMC Evol Biol 2006; 6:1 [View Article][PubMed]
    [Google Scholar]
  41. Arora N, Schuenemann VJ, Jäger G, Peltzer A, Seitz A et al. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol 2016; 2:16245 [View Article][PubMed]
    [Google Scholar]
  42. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst Biol 2018; 67:901–904 [View Article][PubMed]
    [Google Scholar]
  43. Drummond AJ, Rambaut A. Beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007; 7:214 [View Article][PubMed]
    [Google Scholar]
  44. Letunic I, Bork P. Interactive tree of life (iTOL) V4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article][PubMed]
    [Google Scholar]
  45. Barbera P, Kozlov AM, Czech L, Morel B, Darriba D et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst Biol 2019; 68:365–369 [View Article][PubMed]
    [Google Scholar]
  46. Berger SA, Stamatakis A. Aligning short reads to reference alignments and trees. Bioinformatics 2011; 27:2068–2075 [View Article][PubMed]
    [Google Scholar]
  47. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article]
    [Google Scholar]
  48. Czech L, Barbera P, Stamatakis A. Genesis and Gappa: library and toolkit for working with phylogenetic (placement) data. bioRxiv 2019; 647958:
    [Google Scholar]
  49. Stamm LV, Bergen HL. A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate. Antimicrob Agents Chemother 2000; 44:806–807 [View Article][PubMed]
    [Google Scholar]
  50. Bergsten J. A review of long-branch attraction. Cladistics 2005; 21:163–193 [View Article]
    [Google Scholar]
  51. Knauf S, Batamuzi EK, Mlengeya T, Kilewo M, Lejora IAV et al. Treponema infection associated with genital ulceration in wild baboons. Vet Pathol 2012; 49:292–303 [View Article][PubMed]
    [Google Scholar]
  52. Baylet R, Thivolet J, Sepetjian M, Nouhouay Y, Baylet M. [Natural open treponematosis in the Papio papio baboon in Casamance]. Bull Soc Pathol Exot Filiales 1971; 64:842–846[PubMed]
    [Google Scholar]
  53. Fribourg-Blanc A, Mollaret HH. Natural treponematosis of the African primate. Primates Med 1969; 3:113–121[PubMed]
    [Google Scholar]
  54. Mubemba B, Chanove E, Mätz-Rensing K, Gogarten JF, Düx A et al. Yaws disease caused by Treponema pallidum subspecies pertenue in wild chimpanzee, guinea, 2019. Emerg Infect Dis 2020; 26:1283–1286 [View Article][PubMed]
    [Google Scholar]
  55. Davies TJ, Pedersen AB. Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc Biol Sci 2008; 275:1695–1701 [View Article][PubMed]
    [Google Scholar]
  56. Pedersen AB, Davies TJ. Cross-species pathogen transmission and disease emergence in primates. Ecohealth 2009; 6:496–508 [View Article][PubMed]
    [Google Scholar]
  57. Strouhal M, Mikalová L, Havlíčková P, Tenti P, Čejková D et al. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: Identical genome sequences in samples isolated more than 7 years apart. PLoS Negl Trop Dis 2017; 11:e0005894 [View Article][PubMed]
    [Google Scholar]
  58. Boesch C, Boesch H. Hunting behavior of wild chimpanzees in the Taï National Park. Am J Phys Anthropol 1989; 78:547–573 [View Article][PubMed]
    [Google Scholar]
  59. Gogarten JF, Akoua-Koffi C, Calvignac-Spencer S, Leendertz SAJ, Weiss S et al. The ecology of primate retroviruses – an assessment of 12 years of retroviral studies in the Taï National Park area, Côte d׳Ivoire. Virology 2014460–461
    [Google Scholar]
  60. Kumm HW, Turner TB. The transmission of yaws from man to rabbits by an insect vector, Hippelates pallipes Loew 1. Am J Trop Med Hyg 1936; s1-16:245–271 [View Article]
    [Google Scholar]
  61. Satchell GH, Harrison RA. Experimental observations on the possibility of transmission of yaws by wound-feeding Diptera, in Western Samoa. Trans R Soc Trop Med Hyg 1953; 47:148–153 [View Article][PubMed]
    [Google Scholar]
  62. Knauf S, Raphael J, Mitjà O, Lejora IAV, Chuma IS et al. Isolation of Treponema DNA from Necrophagous flies in a natural ecosystem. EBioMedicine 2016; 11:85–90 [View Article][PubMed]
    [Google Scholar]
  63. Gogarten JF, Düx A, Mubemba B, Pléh K, Hoffmann C et al. Tropical rainforest flies carrying pathogens form stable associations with social nonhuman primates. Mol Ecol 2019; 28:4242–4258 [View Article][PubMed]
    [Google Scholar]
  64. Stamm LV. Flies and yaws: molecular studies provide new insight. EBioMedicine 2016; 11:9–10 [View Article][PubMed]
    [Google Scholar]
  65. Fabricius T, Winther C, Ewertsen C, Kemp M, Nielsen SD. Osteitis in the dens of axis caused by Treponema pallidum . BMC Infect Dis 2013; 13:347 [View Article][PubMed]
    [Google Scholar]
  66. Majander K, Pfrengle S, Neukamm J, Kocher A, du PL et al. Ancient bacterial genomes reveal a formerly unknown diversity of Treponema pallidum strains in early modern Europe. bioRxiv 2020
    [Google Scholar]
  67. Schuenemann VJ, Kumar Lankapalli A, Barquera R, Nelson EA, Iraíz Hernández D et al. Historic Treponema pallidum genomes from Colonial Mexico retrieved from archaeological remains. PLoS Negl Trop Dis 2018; 12:e0006447 [View Article]
    [Google Scholar]
  68. Barquera R, Lamnidis TC, Lankapalli AK, Kocher A, Hernández-Zaragoza DI et al. Origin and health status of first-generation Africans from early colonial Mexico. Current Biology 2020; 30:2078-2091.e112078–2091 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000463
Loading
/content/journal/mgen/10.1099/mgen.0.000463
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF

Most cited Most Cited RSS feed