1887

Abstract

is associated with a variety of diseases in both humans and animals. Recent advances in genomic sequencing make it timely to re-visit this important pathogen. Although the genome sequence of was first determined in 2002, large-scale comparative genomics with isolates of different origins is still lacking. In this study, we used whole-genome sequencing of 45 . isolates with isolation time spanning an 80‐year period and performed comparative analysis of 173 genomes from worldwide strains. We also conducted phylogenetic lineage analysis and introduced an openness index (OI) to evaluate the openness of bacterial genomes. We classified all these genomes into five lineages and hypothesized that the origin of dates back to ~80 000 years ago. We showed that the pangenome of the 173 . strains contained a total of 26 954 genes, while the core genome comprised 1020 genes, accounting for about a third of the genome of each isolate. We demonstrated that had the highest OI compared with 51 other bacterial species. Intact prophage sequences were found in nearly 70.0 % of genomes, while CRISPR sequences were found only in ~40.0 %. Plasmids were prevalent in isolates, and half of the virulence genes and antibiotic resistance genes (ARGs) identified in all the isolates could be found in plasmids. ARG-sharing network analysis showed that shared its 11 ARGs with 55 different bacterial species, and a high frequency of ARG transfer may have occurred between and species in the genera and . Correlation analysis showed that the ARG number in strains increased with time, while the virulence gene number was relative stable. Our results, taken together with previous studies, revealed the high genome openness and genetic diversity of and provide a comprehensive view of the phylogeny, genomic features, virulence gene and ARG profiles of worldwide strains.

Funding
This study was supported by the:
  • Yongfei Hu , Starting Grants program for young talents in China Agricultural University
  • Xuezheng Fan , National Key Research and Development Program of China under Grant , (Award 2018YFD0500505)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000441
2020-09-25
2020-12-03
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/10/mgen000441.html?itemId=/content/journal/mgen/10.1099/mgen.0.000441&mimeType=html&fmt=ahah

References

  1. Petit L, Gibert M, Popoff MR. Clostridium perfringens: toxinotype and genotype. Trends Microbiol 1999; 7:104–110 [CrossRef][PubMed]
    [Google Scholar]
  2. Flores-Díaz M, Alape-Girón A. Role of Clostridium perfringens phospholipase C in the pathogenesis of gas gangrene. Toxicon 2003; 42:979–986 [CrossRef][PubMed]
    [Google Scholar]
  3. Kiu R, Caim S, Painset A, Pickard D, Swift C et al. Phylogenomic analysis of gastroenteritis-associated Clostridium perfringens in england and wales over a 7-year period indicates distribution of clonal toxigenic strains in multiple outbreaks and extensive involvement of enterotoxin-encoding (CPE) plasmids. Microb Genomics 2019; 5:e000297
    [Google Scholar]
  4. Mpamugo O, Donovan T, Brett MM. Enterotoxigenic Clostridium perfringens as a cause of sporadic cases of diarrhoea. J Med Microbiol 1995; 43:442–445 [CrossRef][PubMed]
    [Google Scholar]
  5. Fernandez Miyakawa ME, Zabal O, Silberstein C. Clostridium perfringens epsilon toxin is cytotoxic for human renal tubular epithelial cells. Hum Exp Toxicol 2011; 30:275–282 [CrossRef][PubMed]
    [Google Scholar]
  6. Law ST, Lee MK. A middle-aged lady with a pyogenic liver abscess caused by Clostridium perfringens . World J Hepatol 2012; 4:252–255 [CrossRef][PubMed]
    [Google Scholar]
  7. Lugli GA, Milani C, Mancabelli L, Turroni F, Ferrario C et al. Ancient bacteria of the ötzi’s microbiome: a genomic tale from the copper age. Microbiome 2017; 5:5 [CrossRef][PubMed]
    [Google Scholar]
  8. Li G, Lillehoj HS, Lee KW, Jang SI, Marc P et al. An outbreak of gangrenous dermatitis in commercial broiler chickens. Avian Pathol 2010; 39:247–253 [CrossRef][PubMed]
    [Google Scholar]
  9. Okewole PA, Itodo AE, Oyetunde IL, Chima JC, Irokanulo EA et al. Clostridium perfringens type A enterotoxaemia in pigs: a report of five cases. Br Vet J 1991; 147:484–485 [CrossRef][PubMed]
    [Google Scholar]
  10. Uzal FA, Sentíes-Cué CG, Rimoldi G, Shivaprasad HL. Non-Clostridium perfringens infectious agents producing necrotic enteritis-like lesions in poultry. Avian Pathol 2016; 45:326–333 [CrossRef][PubMed]
    [Google Scholar]
  11. Canard B, Saint-Joanis B, Cole ST. Genomic diversity and organization of virulence genes in the pathogenic anaerobe Clostridium perfringens . Mol Microbiol 1992; 6:1421–1429 [CrossRef][PubMed]
    [Google Scholar]
  12. Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens . Emerg Microbes Infect 2018; 7:1–15
    [Google Scholar]
  13. Li J, Adams V, Bannam TL, Miyamoto K, Garcia JP et al. Toxin plasmids of Clostridium perfringens . Microbiol Mol Biol Rev 2013; 77:208–233 [CrossRef][PubMed]
    [Google Scholar]
  14. Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A et al. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci U S A 2002; 99:996–1001 [CrossRef][PubMed]
    [Google Scholar]
  15. Hassan KA, Elbourne LDH, Tetu SG, Melville SB, Rood JI et al. Genomic analyses of Clostridium perfringens isolates from five toxinotypes. Res Microbiol 2015; 166:255–263 [CrossRef][PubMed]
    [Google Scholar]
  16. Lacey JA, Allnutt TR, Vezina B, Van TTH, Stent T et al. Whole genome analysis reveals the diversity and evolutionary relationships between necrotic enteritis-causing strains of Clostridium perfringens . BMC Genomics 2018; 19:379 [CrossRef][PubMed]
    [Google Scholar]
  17. Lacey JA, Johanesen PA, Lyras D, Moore RJ. Genomic diversity of necrotic enteritis-associated strains of Clostridium perfringens: a review. Avian Pathol 2016; 45:302–307 [CrossRef][PubMed]
    [Google Scholar]
  18. Myers GSA, Rasko DA, Cheung JK, Ravel J, Seshadri R et al. Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens . Genome Res 2006; 16:1031–1040 [CrossRef][PubMed]
    [Google Scholar]
  19. Ronco T, Stegger M, Ng KL, Lilje B, Lyhs U et al. Genome analysis of Clostridium perfringens isolates from healthy and necrotic enteritis infected chickens and turkeys. BMC Res Notes 2017; 10:270 [CrossRef][PubMed]
    [Google Scholar]
  20. Kiu R, Caim S, Alexander S, Pachori P, Hall LJ. Probing genomic aspects of the multi-host pathogen Clostridium perfringens reveals significant pangenome diversity, and a diverse array of virulence factors. Front Microbiol 2017; 8:2485 [CrossRef][PubMed]
    [Google Scholar]
  21. McAllister KN, Sorg JA. CRISPR genome editing systems in the genus Clostridium: a timely advancement. J Bacteriol 2019; 201:e00219–19 [CrossRef][PubMed]
    [Google Scholar]
  22. Kiu R, Brown J, Bedwell H, Leclaire C, Caim S et al. Genomic analysis on broiler-associated Clostridium perfringens strains and exploratory caecal microbiome investigation reveals key factors linked to poultry necrotic enteritis. Anim Microbiome 2019; 1:12 [CrossRef][PubMed]
    [Google Scholar]
  23. Bolger AM, Lohse M, Usadel B, Bolger Anthony M, Marc L, Bjoern U. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114 [CrossRef][PubMed]
    [Google Scholar]
  24. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [CrossRef][PubMed]
    [Google Scholar]
  25. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  26. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  27. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A et al. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [CrossRef][PubMed]
    [Google Scholar]
  28. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H et al. Beast 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 2014; 10:e1003537 [CrossRef][PubMed]
    [Google Scholar]
  29. Rasmussen S, Allentoft ME, Nielsen K, Orlando L, Sikora M et al. Early divergent strains of Yersinia pestis in Eurasia 5000 years ago. Cell 2015; 163:571–582 [CrossRef][PubMed]
    [Google Scholar]
  30. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst Biol 2018; 67:901–904 [CrossRef][PubMed]
    [Google Scholar]
  31. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. RhierBAPS: an R implementation of the population clustering algorithm hierbaps. Wellcome Open Res 2018; 3:93 [CrossRef][PubMed]
    [Google Scholar]
  32. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009; 25:1189–1191 [CrossRef][PubMed]
    [Google Scholar]
  33. Paradis E, Claude J, Strimmer K. Ape: analyses of phylogenetics and evolution in R language. Bioinformatics 2004; 20:289–290 [CrossRef][PubMed]
    [Google Scholar]
  34. Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinforma 2005; 1:117693430500100
    [Google Scholar]
  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  36. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24
    [Google Scholar]
  37. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [CrossRef][PubMed]
    [Google Scholar]
  38. Livingstone PG, Morphew RM, Whitworth DE. Genome sequencing and pan-genome analysis of 23 Corallococcus spp. strains reveal unexpected diversity, with particular plasticity of predatory gene sets. Front Microbiol 2018; 9:3187 [CrossRef][PubMed]
    [Google Scholar]
  39. Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt TM. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 2015; 43:D593–D598 [CrossRef][PubMed]
    [Google Scholar]
  40. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. EGGNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286–D293 [CrossRef][PubMed]
    [Google Scholar]
  41. UniProt Consortium Bateman A. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019; 47:D506–D515 [CrossRef][PubMed]
    [Google Scholar]
  42. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res 2016; 44:D694–D697 [CrossRef][PubMed]
    [Google Scholar]
  43. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22:1658–1659 [CrossRef][PubMed]
    [Google Scholar]
  44. Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating Gamma-Series methods and sliding window strategies. Genomics, Proteomics Bioinforma 2010; 8:77–80
    [Google Scholar]
  45. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. Card 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [CrossRef][PubMed]
    [Google Scholar]
  46. Charlebois A, Jalbert L-A, Harel J, Masson L, Archambault M. Characterization of genes encoding for acquired bacitracin resistance in Clostridium perfringens . PLoS One 2012; 7:e44449 [CrossRef][PubMed]
    [Google Scholar]
  47. Hu Y, Yang X, Li J, Lv N, Liu F et al. The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl Environ Microbiol 2016; 82:6672–6681 [CrossRef][PubMed]
    [Google Scholar]
  48. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [CrossRef][PubMed]
    [Google Scholar]
  49. Nasko DJ, Ferrell BD, Moore RM, Bhavsar JD, Polson SW et al. Crispr spacers indicate preferential matching of specific virioplankton genes. mBio 2019; 10:e02651–18 [CrossRef][PubMed]
    [Google Scholar]
  50. Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res 2018; 46:e35 [CrossRef][PubMed]
    [Google Scholar]
  51. Brooks L, Kaze M, Sistrom M. A curated, comprehensive database of plasmid sequences. Microbiol Resour Announc 2019; 8:e01325–18 [CrossRef][PubMed]
    [Google Scholar]
  52. Gohari IM, Prescott JF. Commentary: Probing genomic aspects of the multi-host pathogen Clostridium perfringens reveals significant pangenome diversity, and a diverse array of virulence factors. Front Microbiol 1856; 2018:9
    [Google Scholar]
  53. Wan X, Koster K, Qian L, Desmond E, Brostrom R et al. Genomic analyses of the ancestral Manila family of Mycobacterium tuberculosis . PLoS One 2017; 12:e0175330 [CrossRef][PubMed]
    [Google Scholar]
  54. Mooi FR. Bordetella pertussis and vaccination: the persistence of a genetically monomorphic pathogen. Infect Genet Evol 2010; 10:36–49 [CrossRef][PubMed]
    [Google Scholar]
  55. Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol 2016; 1:16160 [CrossRef][PubMed]
    [Google Scholar]
  56. Rood JI. Virulence genes of Clostridium perfringens. Annu Rev Microbiol 1998; 52:333–360 [CrossRef][PubMed]
    [Google Scholar]
  57. Li J, Sayeed S, Robertson S, Chen J, McClane BA. Sialidases affect the host cell adherence and epsilon toxin-induced cytotoxicity of Clostridium perfringens type D strain CN3718. PLoS Pathog 2011; 7:e1002429 [CrossRef][PubMed]
    [Google Scholar]
  58. Lindström M, Heikinheimo A, Lahti P, Korkeala H. Novel insights into the epidemiology of Clostridium perfringens type A food poisoning. Food Microbiol 2011; 28:192–198 [CrossRef][PubMed]
    [Google Scholar]
  59. Keyburn AL, Boyce JD, Vaz P, Bannam TL, Ford ME et al. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens . PLoS Pathog 2008; 4:e26 [CrossRef][PubMed]
    [Google Scholar]
  60. Sheedy SA, Ingham AB, Rood JI, Moore RJ. Highly conserved alpha-toxin sequences of avian isolates of Clostridium perfringens . J Clin Microbiol 2004; 42:1345–1347 [CrossRef][PubMed]
    [Google Scholar]
  61. Justin N, Walker N, Bullifent HL, Songer G, Bueschel DM et al. The first strain of Clostridium perfringens isolated from an avian source has an alpha-toxin with divergent structural and kinetic properties. Biochemistry 2002; 41:6253–6262 [CrossRef][PubMed]
    [Google Scholar]
  62. Comas I, Coscolla M, Luo T, Borrell S, Holt KE et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 2013; 45:1176–1182 [CrossRef][PubMed]
    [Google Scholar]
  63. Chan AP, Sutton G, DePew J, Krishnakumar R, Choi Y et al. A novel method of consensus pan-chromosome assembly and large-scale comparative analysis reveal the highly flexible pan-genome of Acinetobacter baumannii . Genome Biol 2015; 16:143 [CrossRef][PubMed]
    [Google Scholar]
  64. Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ et al. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol 2010; 11:R107 [CrossRef][PubMed]
    [Google Scholar]
  65. Park SC, Lee K, Kim YO, Won S, Chun J. Large-scale genomics reveals the genetic characteristics of seven species and importance of phylogenetic distance for estimating pan-genome size. Front Microbiol 2019; 10:834 [CrossRef][PubMed]
    [Google Scholar]
  66. Smith S, Schaffner DW. Evaluation of a Clostridium perfringens predictive model, developed under isothermal conditions in broth, to predict growth in ground beef during cooling. Appl Environ Microbiol 2004; 70:2728–2733 [CrossRef][PubMed]
    [Google Scholar]
  67. Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 2013; 4:354–365 [CrossRef][PubMed]
    [Google Scholar]
  68. Freedman JC, Shrestha A, McClane BA. Clostridium perfringens enterotoxin: action, genetics, and translational applications. Toxins 2016; 8:73 [CrossRef][PubMed]
    [Google Scholar]
  69. Frieden T. Antibiotic resistance threats in the United States. Centers Dis Control Prev 2013; 114:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000441
Loading
/content/journal/mgen/10.1099/mgen.0.000441
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error