1887

Abstract

Increasing contact between humans and non-human primates provides an opportunity for the transfer of potential pathogens or antimicrobial resistance between host species. We have investigated genomic diversity and antimicrobial resistance in isolates from four species of non-human primates in the Gambia: (=22), (=14), (=6) and (=1). We performed Illumina whole-genome sequencing on 101 isolates from 43 stools, followed by nanopore long-read sequencing on 11 isolates. We identified 43 sequence types (STs) by the Achtman scheme (ten of which are novel), spanning five of the eight known phylogroups of . The majority of simian isolates belong to phylogroup B2 – characterized by strains that cause human extraintestinal infections – and encode factors associated with extraintestinal disease. A subset of the B2 strains (ST73, ST681 and ST127) carry the genomic island, which encodes colibactin, a genotoxin associated with colorectal cancer. We found little antimicrobial resistance and only one example of multi-drug resistance among the simian isolates. Hierarchical clustering showed that simian isolates from ST442 and ST349 are closely related to isolates recovered from human clinical cases (differences in 50 and 7 alleles, respectively), suggesting recent exchange between the two host species. Conversely, simian isolates from ST73, ST681 and ST127 were distinct from human isolates, while five simian isolates belong to unique core-genome ST complexes – indicating novel diversity specific to the primate niche. Our results are of planetary health importance, considering the increasing contact between humans and wild non-human primates.

Funding
This study was supported by the:
  • Mark John Pallen , Biotechnology and Biological Sciences Research Council , (Award BB/R012504/1)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000428
2020-09-14
2021-02-26
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/9/mgen000428.html?itemId=/content/journal/mgen/10.1099/mgen.0.000428&mimeType=html&fmt=ahah

References

  1. Sousa CP. The versatile strategies of Escherichia coli pathotypes: a mini review. J Venom Anim Toxins Incl Trop Dis 2006; 12:363–373 [CrossRef]
    [Google Scholar]
  2. Kaper JB, Nataro JP, Mobley HLT. Pathogenic Escherichia coli . Nat Rev Microbiol 2004; 2:123–140 [CrossRef]
    [Google Scholar]
  3. Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli . Nat Rev Microbiol 2010; 8:207–217 [CrossRef]
    [Google Scholar]
  4. Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microbial Genomics 2018; 4:e000192 [CrossRef]
    [Google Scholar]
  5. Clayton JB, Danzeisen JL, Trent AM, Murphy T, Johnson TJ. Longitudinal characterization of Escherichia coli in healthy captive non-human primates. Front Vet Sci 2014; 1:24 [CrossRef][PubMed]
    [Google Scholar]
  6. Feng Y, Mannion A, Madden CM, Swennes AG, Townes C et al. Cytotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor (CNF) colonize laboratory macaques. Gut Pathog 2017; 9:71 [CrossRef]
    [Google Scholar]
  7. Thomson JA, Scheffler JJ. Hemorrhagic typhlocolitis associated with attaching and effacing Escherichia coli in common marmosets. Laboratory Animal Science 1996; 46:275–279
    [Google Scholar]
  8. Mansfield KG, Lin K-C, Newman J, Schauer D, MacKey J et al. Identification of enteropathogenic Escherichia coli in simian immunodeficiency virus-infected infant and adult rhesus macaques. J Clin Microbiol 2001; 39:971–976 [CrossRef]
    [Google Scholar]
  9. Mansfield KG, Lin Kuei‐Chin, Xia D, Newman JV, Schauer DB et al. Enteropathogenic Escherichia coli and ulcerative colitis in cotton-top tamarins (Saguinus oedipus) . J Infect Dis 2001; 184:803–807 [CrossRef]
    [Google Scholar]
  10. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 2008; 6:776–788 [CrossRef]
    [Google Scholar]
  11. Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV et al. Cospeciation of gut microbiota with hominids. Science 2016; 353:380–382 [CrossRef]
    [Google Scholar]
  12. Lozupone CA, Stombaugh J, Gonzalez A, Ackermann G, Wendel D et al. Meta-analyses of studies of the human microbiota. Genome Res 2013; 23:1704–1714 [CrossRef]
    [Google Scholar]
  13. RdO I, Dejuste C, Miranda F, Filoni C, Bueno MG et al. Isolation of Escherichia coli and Salmonella spp. from free-ranging wild animals. Brazillian Journal of Microbiology 2015; 46:1257–1263
    [Google Scholar]
  14. Bublitz DC, Wright PC, Rasambainarivo FT, Arrigo-Nelson SJ, Bodager JR et al. Pathogenic enterobacteria in lemurs associated with anthropogenic disturbance. Am J Primatol 2015; 77:330–337 [CrossRef]
    [Google Scholar]
  15. Weiss D, Wallace RM, Rwego IB, Gillespie TR, Chapman CA et al. Antibiotic-resistant Escherichia coli and Class 1 integrons in humans, domestic animals, and wild primates in Rural Uganda. Appl Environ Microbiol 2018; 84:e01632–18 [CrossRef]
    [Google Scholar]
  16. Senghore M, Bayliss SC, Kwambana-Adams BA, Foster-Nyarko E, Manneh J et al. Transmission of Staphylococcus aureus from humans to green monkeys in the Gambia as revealed by whole-genome sequencing. Appl Environ Microbiol 2016; 82:5910–5917 [CrossRef]
    [Google Scholar]
  17. Goldberg TL, Gillespie TR, Rwego IB, Estoff EL, Chapman CA. Forest fragmentation as cause of bacterial transmission among nonhuman primates, humans, and livestock, Uganda. Emerg Infect Dis 2008; 14:1375–1382 [CrossRef]
    [Google Scholar]
  18. Rwego IB, Isabirye-Basuta G, Gillespie TR, Goldberg TL. Gastrointestinal bacterial transmission among humans, mountain gorillas, and livestock in Bwindi impenetrable National Park, Uganda. Conserv Biol 2008; 22:1600–1607 [CrossRef][PubMed]
    [Google Scholar]
  19. Arnold KE, Williams NJ, Bennett M. ‘Disperse abroad in the land’: the role of wildlife in the dissemination of antimicrobial resistance. Biol Lett 2016; 12:20160137 [CrossRef]
    [Google Scholar]
  20. Chen SL, Wu M, Henderson JP, Hooton TM, Hibbing ME et al. Genomic diversity and fitness of E. coli strains recovered from the intestinal and urinary tracts of women with recurrent urinary tract infection. Sci Transl Med 2013; 5:184ra60 [CrossRef]
    [Google Scholar]
  21. Richter TKS, Hazen TH, Lam D, Coles CL, Seidman JC et al. Temporal variability of Escherichia coli diversity in the gastrointestinal tracts of Tanzanian children with and without exposure to antibiotics. mSphere 2018; 3:e00558–18 [CrossRef]
    [Google Scholar]
  22. Dixit OVA, O'Brien CL, Pavli P, Gordon DM. Within-host evolution versus immigration as a determinant of Escherichia coli diversity in the human gastrointestinal tract. Environ Microbiol 2018; 20:993–1001 [CrossRef]
    [Google Scholar]
  23. Schlager TA, Hendley JO, Bell AL, Whittam TS. Clonal diversity of Escherichia coli colonizing stools and urinary tracts of young girls. Infect Immun 2002; 70:1225–1229 [CrossRef]
    [Google Scholar]
  24. Lidin-Janson G, Kaijser B, Lincoln K, Olling S, Wedel H. The homogeneity of the faecal coliform flora of normal school-girls, characterized by serological and biochemical properties. Med Microbiol Immunol 1978; 164:247–253 [CrossRef]
    [Google Scholar]
  25. Connor TR, Loman NJ, Thompson S, Smith A, Southgate J et al. CLIMB (the cloud infrastructure for microbial bioinformatics): an online resource for the medical microbiology community. Microbial Genomics 2016; 2:e00008 [CrossRef]
    [Google Scholar]
  26. Wingett SW, Andrews S. FastQ screen: a tool for multi-genome mapping and quality control. F1000Res 2018; 7:1338 [CrossRef]
    [Google Scholar]
  27. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [CrossRef]
    [Google Scholar]
  28. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef]
    [Google Scholar]
  29. Jolley KA, Maiden MCJ. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [CrossRef]
    [Google Scholar]
  30. Zhou Z, Alikhan N-F, Mohamed K, Fan Y, Achtman M. The EnteroBase user's guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res 2020; 30:138–152 [CrossRef]
    [Google Scholar]
  31. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [CrossRef]
    [Google Scholar]
  32. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [CrossRef]
    [Google Scholar]
  33. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [CrossRef]
    [Google Scholar]
  34. Frentrup M, Zhou Z, Steglich M, Meier-Kolthoff JP, Göker M et al. Global genomic population structure of Clostridioides difficile . BioRxiv 2019; 727230:
    [Google Scholar]
  35. Wheeler TJ. Large-Scale neighbor-joining with NINJA. in: proceedings of the 9th workshop on algorithms in bioinformatics; 2009; 5724375–389
  36. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microbial Genomics 2017; 3:e000131 [CrossRef]
    [Google Scholar]
  37. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:D687–D692 [CrossRef]
    [Google Scholar]
  38. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [CrossRef]
    [Google Scholar]
  39. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In Silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [CrossRef]
    [Google Scholar]
  40. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012; 28:464–469 [CrossRef]
    [Google Scholar]
  41. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [CrossRef]
    [Google Scholar]
  42. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [CrossRef]
    [Google Scholar]
  43. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [CrossRef]
    [Google Scholar]
  44. Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008; 3:163–175 [CrossRef]
    [Google Scholar]
  45. Escobar-Páramo P, Clermont O, Blanc-Potard A-B, Bui H, Le Bouguénec C et al. A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli . Mol Biol Evol 2004; 21:1085–1094 [CrossRef][PubMed]
    [Google Scholar]
  46. Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N et al. The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 1999; 67:546–553 [CrossRef][PubMed]
    [Google Scholar]
  47. Manges AR, Johnson JR. Reservoirs of extraintestinal pathogenic Escherichia coli . Microbiology Spectrum 2015; 3:UTI-0006-2012. [CrossRef]
    [Google Scholar]
  48. Kamjumphol W, Wongboot W, Suebwongsa N, Kluabwang P, Chantaroj S et al. Draft genome sequence of a colistin-resistant Escherichia coli ST226: A clinical strain harbouring an mcr-1 variant. J Glob Antimicrob Resist 2019; 16:168–169 [CrossRef][PubMed]
    [Google Scholar]
  49. Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD et al. Global Extraintestinal Pathogenic Escherichia coli (ExPEC) Lineages. Clin Microbiol Rev 2019; 32:e00135–18 [CrossRef]
    [Google Scholar]
  50. Krieger JN, Dobrindt U, Riley DE, Oswald E. Acute Escherichia coli prostatitis in previously health young men: bacterial virulence factors, antimicrobial resistance, and clinical outcomes. Urology 2011; 77:1420–1425 [CrossRef]
    [Google Scholar]
  51. Faïs T, Delmas J, Barnich N, Bonnet R, Dalmasso G. Colibactin: more than a new bacterial toxin. Toxins 2018; 10:151 [CrossRef]
    [Google Scholar]
  52. Johnson JR, Johnston B, Kuskowski MA, Nougayrede J-P, Oswald E. Molecular epidemiology and phylogenetic distribution of the Escherichia coli pks genomic island. J Clin Microbiol 2008; 46:3906–3911 [CrossRef]
    [Google Scholar]
  53. Reeves PR, Liu B, Zhou Z, Li D, Guo D et al. Rates of mutation and host transmission for an Escherichia coli clone over 3 years. PLoS One 2011; 6:e26907 [CrossRef]
    [Google Scholar]
  54. Zogg AL, Zurfluh K, Schmitt S, Nüesch-Inderbinen M, Stephan R. Antimicrobial resistance, multilocus sequence types and virulence profiles of ESBL producing and non-ESBL producing uropathogenic Escherichia coli isolated from cats and dogs in Switzerland. Vet Microbiol 2018; 216:79–84 [CrossRef]
    [Google Scholar]
  55. Keusch GT, Pappaioanou M, Gonzalez MC. National Research Council (US) Committee on Achieving Sustainable Global Capacity for Surveillance and Response to Emerging Diseases of Zoonotic Origin Sustaining Global Surveillance and Response to Emerging Zoonotic Diseases 3 Washington, DC: National Academies Press (US); 2009
    [Google Scholar]
  56. Ewers C, Grobbel M, Stamm I, Kopp PA, Diehl I et al. Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum-beta-lactamase-producing Escherichia coli among companion animals. J Antimicrob Chemother 2010; 65:651–660 [CrossRef][PubMed]
    [Google Scholar]
  57. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the global enteric multicenter study, GEMs): a prospective, case-control study. The Lancet 2013; 382:209–222 [CrossRef]
    [Google Scholar]
  58. Vittecoq M, Godreuil S, Prugnolle F, Durand P, Brazier L et al. Antimicrobial resistance in wildlife. J Appl Ecol 2016; 53:519–529 [CrossRef]
    [Google Scholar]
  59. Arredondo-Alonso S, Willems RJ, van Schaik W, Schürch AC. On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data. Microbial Genomics 2017; 3:e000128 [CrossRef]
    [Google Scholar]
  60. Carattoli A. Resistance plasmid families in Enterobacteriaceae . Antimicrob Agents Chemother 2009; 53:2227–2238 [CrossRef]
    [Google Scholar]
  61. Johnson TJ, Nolan LK. Pathogenomics of the virulence plasmids of Escherichia coli . Microbiol Mol Biol Rev 2009; 73:750–774 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000428
Loading
/content/journal/mgen/10.1099/mgen.0.000428
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error