1887

Abstract

Carbapenemases inactivate most β-lactam antibiotics, including carbapenems, and have frequently been reported among , spp. and spp. Traditionally, the horizontal gene transfer of carbapenemase-encoding genes (CEGs) has been linked to plasmids. However, given that integrative and conjugative elements (ICEs) are possibly the most abundant conjugative elements among prokaryotes, we conducted an analysis to ascertain the likely role of ICEs in the spread of CEGs among all bacterial genomes (=182 663). We detected 17 520 CEGs, of which 66 were located within putative ICEs among several bacterial species (including clinically relevant bacteria, such as , and ). Most CEGs detected within ICEs belong to the IMP, NDM and SPM metallo-beta-lactamase families, and the serine beta-lactamase KPC and GES families. Different mechanisms were likely responsible for acquisition of these genes. The majority of CEG-bearing ICEs belong to the MPF, MPF and MPF classes and often encode resistance to other antibiotics (e.g. aminoglycosides and fluoroquinolones). This study provides a snapshot of the different CEGs associated with ICEs among available bacterial genomes and sheds light on the underappreciated contribution of ICEs to the spread of carbapenem resistance globally.

Funding
This study was supported by the:
  • Not Applicable , This work was supported by the Applied Molecular Biosciences Unit - UCIBIO which is financed by national funds from FCT (UIDB/04378/2020).
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000424
2020-08-25
2020-10-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10.1099/mgen.0.000424/mgen000424.html?itemId=/content/journal/mgen/10.1099/mgen.0.000424&mimeType=html&fmt=ahah

References

  1. EFSA Panel on Biological Hazards (BIOHAZ) Scientific opinion on carbapenem resistance in food animal ecosystems. EFSA J 2013; 11:
    [Google Scholar]
  2. World Health Organization Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. http://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed 14 Aug 2020
  3. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 2018; 31:e00088–17 [CrossRef][PubMed]
    [Google Scholar]
  4. Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019; 44:100640 [CrossRef][PubMed]
    [Google Scholar]
  5. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007; 20:440–458 [CrossRef][PubMed]
    [Google Scholar]
  6. Botelho J, Roberts AP, León-Sampedro R, Grosso F, Peixe L. Carbapenemases on the move: it’s good to be on ICEs. Mob DNA 2018; 9:37 [CrossRef][PubMed]
    [Google Scholar]
  7. Lam MMC, Wyres KL, Duchêne S, Wick RR, Judd LM et al. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nat Commun 2018; 9:2703 [CrossRef][PubMed]
    [Google Scholar]
  8. Libante V, Nombre Y, Coluzzi C, Staub J, Guédon G et al. Chromosomal conjugative and mobilizable elements in Streptococcus suis: major actors in the spreading of antimicrobial resistance and bacteriocin synthesis genes. Pathogens 2019; 9:22 [CrossRef][PubMed]
    [Google Scholar]
  9. van Belkum A, Soriaga LB, LaFave MC, Akella S, Veyrieras J-B et al. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. mBio 2015; 6:e01796–15 [CrossRef][PubMed]
    [Google Scholar]
  10. Fang Y, Wang Y, Li Z, Liu Z, Li X et al. Distribution and genetic characteristics of SXT/R391 integrative conjugative elements in Shewanella spp. from China. Front Microbiol 2018; 9:920 [CrossRef][PubMed]
    [Google Scholar]
  11. Guglielmini J, Quintais L, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet 2011; 7:e1002222 [CrossRef][PubMed]
    [Google Scholar]
  12. Carraro N, Burrus V. The dualistic nature of integrative and conjugative elements. Mob Genet Elements 2015; 5:98–102 [CrossRef][PubMed]
    [Google Scholar]
  13. Cury J, Touchon M, Rocha EPC. Integrative and conjugative elements and their hosts: composition, distribution and organization. Nucleic Acids Res 2017; 45:8943–8956 [CrossRef][PubMed]
    [Google Scholar]
  14. Johnson CM, Grossman AD. Integrative and conjugative elements (ICEs): what they do and how they work. Annu Rev Genet 2015; 49:577–601 [CrossRef][PubMed]
    [Google Scholar]
  15. Gaillard M, Vallaeys T, Vorhölter FJ, Minoia M, Werlen C et al. The CLC element of Pseudomonas sp. strain B13, a genomic island with various catabolic properties. J Bacteriol 2006; 188:1999–2013 [CrossRef][PubMed]
    [Google Scholar]
  16. Waldor MK, Tschäpe H, Mekalanos JJ. A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol 1996; 178:4157–4165 [CrossRef][PubMed]
    [Google Scholar]
  17. Klockgether J, Reva O, Larbig K, Tümmler B. Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa C. J Bacteriol 2004; 186:518–534 [CrossRef][PubMed]
    [Google Scholar]
  18. Springael D, Kreps S, Mergeay M. Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5. J Bacteriol 1993; 175:1674–1681 [CrossRef][PubMed]
    [Google Scholar]
  19. Botelho J, Schulenburg H. The role of integrative and conjugative elements in antibiotic resistance evolution. Trends Microbiol 2020; S0966-842X(20)30137-2: [CrossRef][PubMed]
    [Google Scholar]
  20. Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512–537 [CrossRef][PubMed]
    [Google Scholar]
  21. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EPC, de la Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev 2010; 74:434–452 [CrossRef][PubMed]
    [Google Scholar]
  22. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob Agents Chemother 2019; 63.: [CrossRef][PubMed]
    [Google Scholar]
  23. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using diamond. Nat Methods 2015; 12:59–60 [CrossRef][PubMed]
    [Google Scholar]
  24. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [CrossRef][PubMed]
    [Google Scholar]
  25. Garcillán-Barcia MP, Redondo-Salvo S, Vielva L, de la Cruz F. MOBscan: automated annotation of MOB relaxases. Methods Mol Biol 2020; 2075:295–308. Humana Press Inc [CrossRef][PubMed]
    [Google Scholar]
  26. Abby SS, Néron B, Ménager H, Touchon M, Rocha EPC. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS One 2014; 9:e110726 [CrossRef][PubMed]
    [Google Scholar]
  27. Abby SS, Cury J, Guglielmini J, Néron B, Touchon M et al. Identification of protein secretion systems in bacterial genomes. Sci Rep 2016; 6:23080 [CrossRef][PubMed]
    [Google Scholar]
  28. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [CrossRef][PubMed]
    [Google Scholar]
  29. Partridge SR, Tsafnat G. Automated annotation of mobile antibiotic resistance in gram-negative bacteria: the multiple antibiotic resistance Annotator (MARA) and database. J Antimicrob Chemother 2018; 73:883–890 [CrossRef][PubMed]
    [Google Scholar]
  30. Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE–a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 2015; 43:D298–D299 [CrossRef][PubMed]
    [Google Scholar]
  31. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 2018; 46:W246–W251 [CrossRef][PubMed]
    [Google Scholar]
  32. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [CrossRef][PubMed]
    [Google Scholar]
  33. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [CrossRef][PubMed]
    [Google Scholar]
  34. Cury J, Oliveira PH, de la Cruz F, Rocha EPC. Host range and genetic plasticity explain the coexistence of integrative and extrachromosomal mobile genetic elements. Mol Biol Evol 2018; 35:2230–2239 [CrossRef][PubMed]
    [Google Scholar]
  35. Ding Y, Teo JWP, Drautz-Moses DI, Schuster SC, Givskov M et al. Acquisition of resistance to carbapenem and macrolide-mediated quorum sensing inhibition by Pseudomonas aeruginosa via ICETn43716385. Commun Biol 2018; 1:57 [CrossRef][PubMed]
    [Google Scholar]
  36. Nascimento APB, Ortiz MF, Martins WMBS, Morais GL, Fehlberg LCC et al. Intraclonal genome stability of the metallo-β-lactamase SPM-1-producing Pseudomonas aeruginosa ST277, an endemic clone disseminated in Brazilian hospitals. Front Microbiol 2016; 7:1946 [CrossRef][PubMed]
    [Google Scholar]
  37. Cuzon G, Naas T, Nordmann P. Functional characterization of Tn4401, a Tn3-based transposon involved in blaKPC gene mobilization. Antimicrob Agents Chemother 2011; 55:5370–5373 [CrossRef][PubMed]
    [Google Scholar]
  38. Tohya M, Tada T, Watanabe S, Kuwahara-Arai K, Zin KN et al. Emergence of carbapenem-resistant Pseudomonas asiatica producing NDM-1 and VIM-2 metallo-β-lactamases in Myanmar. Antimicrob Agents Chemother 2019; 63: [CrossRef]
    [Google Scholar]
  39. Banerjee R, Weisenhorn E, Schwartz KJ, Myers KS, Glasner JD et al. Tailoring a global iron regulon to a uropathogen. mBio 2020; 11:e00351-20 [CrossRef][PubMed]
    [Google Scholar]
  40. San Millan A, Escudero JA, Gifford DR, Mazel D, MacLean RC. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat Ecol Evol 2017; 1:0010 [CrossRef]
    [Google Scholar]
  41. Inglis RF, Bayramoglu B, Gillor O, Ackermann M. The role of bacteriocins as selfish genetic elements. Biol Lett 2013; 9:20121173 [CrossRef][PubMed]
    [Google Scholar]
  42. Guglielmini J, Néron B, Abby SS, Garcillán-Barcia MP, de la Cruz F et al. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res 2014; 42:5715–5727 [CrossRef][PubMed]
    [Google Scholar]
  43. Abril D, Marquez-Ortiz RA, Castro-Cardozo B, Moncayo-Ortiz JI, Olarte Escobar NM et al. Genome plasticity favours double chromosomal Tn4401b-blaKPC-2 transposon insertion in the Pseudomonas aeruginosa ST235 clone. BMC Microbiol 2019; 19:45 [CrossRef][PubMed]
    [Google Scholar]
  44. Urbanowicz P, Izdebski R, Baraniak A, Żabicka D, Ziółkowski G et al. Pseudomonas aeruginosa with NDM-1, DIM-1 and PME-1 β-lactamases, and RmtD3 16S rRNA methylase, encoded by new genomic islands. J Antimicrob Chemother 2019; 74:3117–3119 [CrossRef][PubMed]
    [Google Scholar]
  45. Khan A, Shropshire WC, Hanson B, Dinh AQ, Wanger A et al. Simultaneous Infection with Enterobacteriaceae and Pseudomonas aeruginosa Harboring Multiple Carbapenemases in a Returning Traveler Colonized with Candida auris. Antimicrob Agents Chemother 2019; 64: [CrossRef]
    [Google Scholar]
  46. Zhan Z, Hu L, Jiang X, Zeng L, Feng J et al. Plasmid and chromosomal integration of four novel blaIMP-carrying transposons from Pseudomonas aeruginosa, Klebsiella pneumoniae and an Enterobacter sp. J Antimicrob Chemother 2018; 73:3005–3015 [CrossRef][PubMed]
    [Google Scholar]
  47. McCracken MG, Adam HJ, Blondeau JM, Walkty AJ, Karlowsky JA et al. Characterization of carbapenem-resistant and XDR Pseudomonas aeruginosa in Canada: results of the CANWARD 2007-16 study. J Antimicrob Chemother 2019; 74:iv32–iv38 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000424
Loading
/content/journal/mgen/10.1099/mgen.0.000424
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error