Comparative genomic insights into – a commonly misidentified -like organism Open Access

Abstract

Food-associated outbreaks linked to enteropathogenic are of concern to public health. Pigs and their meat are recognized risk factors for transmission of . This study aimed to describe the comparative genomics of along with a number of misclassified isolates, now constituting the recently described . The latter was originally cultured from an environmental sample taken at a pig slaughterhouse. Unique features were identified in the genome of including a novel integrative conjugative element (ICE), denoted as ICE contained within a 255 kbp region of plasticity. In addition, a zebrafish embryo infection model was adapted and applied to assess the virulence potential among isolates including .

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000411
2020-07-23
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/9/mgen000411.html?itemId=/content/journal/mgen/10.1099/mgen.0.000411&mimeType=html&fmt=ahah

References

  1. European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC) The European Union one health 2018 zoonoses report. Efsa J 2019; 17:e05926 [View Article][PubMed]
    [Google Scholar]
  2. Bottone EJ. Yersinia enterocolitica: overview and epidemiologic correlates. Microbes Infect 1999; 1:323–333 [View Article][PubMed]
    [Google Scholar]
  3. Pin C, Baranyi J, de Fernando GG. Predictive model for the growth of Yersinia enterocolitica under modified atmospheres. J Appl Microbiol 2000; 88:521–530 [View Article][PubMed]
    [Google Scholar]
  4. Drummond N, Murphy BP, Ringwood T, Prentice MB, Buckley JF et al. Yersinia enterocolitica: a brief review of the issues relating to the zoonotic pathogen, public health challenges, and the pork production chain. Foodborne Pathog Dis 2012; 9:179–189 [View Article][PubMed]
    [Google Scholar]
  5. Alenizi D, Ringwood T, Redhwan A, Bouraha B, Wren BW et al. All Yersinia enterocolitica are pathogenic: virulence of phylogroup 1 Y. enterocolitica in a Galleria mellonella infection model. Microbiology 2016; 162:1379–1387 [View Article][PubMed]
    [Google Scholar]
  6. Hunter E, Greig DR, Schaefer U, Wright MJ, Dallman TJ et al. Identification and typing of Yersinia enterocolitica and Yersinia pseudotuberculosis isolated from human clinical specimens in England between 2004 and 2018. J Med Microbiol 2019; 68:538–548 [View Article][PubMed]
    [Google Scholar]
  7. Clarke M, Dabke G, Strakova L, Jenkins C, Saavedra-Campos M et al. Introduction of PCR testing reveals a previously unrecognized burden of yersiniosis in Hampshire, UK. J Med Microbiol 2020; 69:419–426 [View Article][PubMed]
    [Google Scholar]
  8. Fredriksson-Ahomaa M, Joutsen S, Laukkanen-Ninios R. Identification of Yersinia at the species and subspecies levels is challenging. Curr Clin Microbiol Rep 2018; 5:135–142 [View Article]
    [Google Scholar]
  9. McNally A, La Ragione RM, Best A, Manning G, Newell DG. An aflagellate mutant Yersinia enterocolitica biotype 1A strain displays altered invasion of epithelial cells, persistence in macrophages, and cytokine secretion profiles in vitro. Microbiology 2007; 153:1339–1349 [View Article][PubMed]
    [Google Scholar]
  10. Gupta V, Gulati P, Bhagat N, Dhar MS, Virdi JS. Detection of Yersinia enterocolitica in food: an overview. Eur J Clin Microbiol Infect Dis 2015; 34:641–650 [View Article][PubMed]
    [Google Scholar]
  11. Sanno A, Aspan A, Hestvik G, Jacobson M. Presence of Salmonella spp., Yersinia enterocolitica, Yersinia pseudotuberculosis and Escherichia coli O157:H7 in wild boars. Epidemiol Infect 2014; 142:2542–2547
    [Google Scholar]
  12. Lorencova A, Babak V, Lamka J. Serological Prevalence of Enteropathogenic Yersinia spp. in Pigs and Wild Boars from Different Production Systems in the Moravian Region, Czech Republic. Foodborne Pathog Dis 2016; 13:275–279 [View Article][PubMed]
    [Google Scholar]
  13. Bancerz-Kisiel A, Szweda W. Yersiniosis - a zoonotic foodborne disease of relevance to public health. Ann Agric Environ Med 2015; 22:397–402 [View Article][PubMed]
    [Google Scholar]
  14. Nguyen SV, Muthappa DM, Hurley D, Donoghue O, McCabe E et al. Yersinia hibernica sp. nov., isolated from pig-production environments. Int J Syst Evol Microbiol 2019; 69:2023–2027 [View Article][PubMed]
    [Google Scholar]
  15. Shi G, Su M, Liang J, Duan R, Gu W et al. Complete genome sequence and comparative genome analysis of a new special Yersinia enterocolitica . Arch Microbiol 2016; 198:673–687 [View Article][PubMed]
    [Google Scholar]
  16. Imori PFM, Campioni F, Cao G, Kastanis G, Leon MS et al. Draft Genome Sequences of Yersinia frederiksenii, Yersinia intermedia, and Yersinia kristensenii Strains from Brazil. Genome Announc 2017; 5:e00780–17 [View Article][PubMed]
    [Google Scholar]
  17. Imori PFM, Passaglia J, Souza RA, Rocha LB, Falcão JP. Virulence-related genes, adhesion and invasion of some Yersinia enterocolitica-like strains suggests its pathogenic potential. Microb Pathog 2017; 104:72–77 [View Article][PubMed]
    [Google Scholar]
  18. Reuter S, Connor TR, Barquist L, Walker D, Feltwell T et al. Parallel independent evolution of pathogenicity within the genus Yersinia . Proc Natl Acad Sci U S A 2014; 111:6768–6773 [View Article][PubMed]
    [Google Scholar]
  19. Sihvonen LM, Haukka K, Kuusi M, Virtanen MJ, Siitonen A et al. Yersinia enterocolitica and Y. enterocolitica-like species in clinical stool specimens of humans: identification and prevalence of bio/serotypes in Finland. Eur J Clin Microbiol Infect Dis 2009; 28:757–765 [View Article][PubMed]
    [Google Scholar]
  20. Huovinen E, Sihvonen LM, Virtanen MJ, Haukka K, Siitonen A et al. Symptoms and sources of Yersinia enterocolitica-infection: a case-control study. BMC Infect Dis 2010; 10:122 [View Article][PubMed]
    [Google Scholar]
  21. Stephan R, Joutsen S, Hofer E, Säde E, Björkroth J, Ziegler D et al. Characteristics of Yersinia enterocolitica biotype 1A strains isolated from patients and asymptomatic carriers. Eur J Clin Microbiol Infect Dis 2013; 32:869–875 [View Article][PubMed]
    [Google Scholar]
  22. Nguyen SV, Greig DR, Hurley D, Donoghue O, Cao Y et al. Yersinia canariae sp. nov., isolated from a human yersiniosis case. Int J Syst Evol Microbiol 2020; 70:2382–2387 [View Article][PubMed]
    [Google Scholar]
  23. Thomson NR, Howard S, Wren BW, Holden MTG, Crossman L et al. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet 2006; 2:e206 [View Article][PubMed]
    [Google Scholar]
  24. Neubauer H, Aleksic S, Hensel A, Finke EJ, Meyer H. Yersinia enterocolitica 16S rRNA gene types belong to the same genospecies but form three homology groups. Int J Med Microbiol 2000; 290:61–64 [View Article][PubMed]
    [Google Scholar]
  25. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  26. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article][PubMed]
    [Google Scholar]
  27. Williamson DA, Baines SL, Carter GP, da Silva AG, Ren X et al. Genomic Insights into a Sustained National Outbreak of Yersinia pseudotuberculosis . Genome Biol Evol 2017; 8:3806–3814
    [Google Scholar]
  28. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017; 33:2938–2940 [View Article][PubMed]
    [Google Scholar]
  29. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article][PubMed]
    [Google Scholar]
  30. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res 2016; 44:D694–D697 [View Article][PubMed]
    [Google Scholar]
  31. Savin C, Criscuolo A, Guglielmini J, Le Guern A-S, Carniel E et al. Genus-wide Yersinia core-genome multilocus sequence typing for species identification and strain characterization. Microb Genom 2019; 5: [View Article][PubMed]
    [Google Scholar]
  32. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article][PubMed]
    [Google Scholar]
  33. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn 1995; 203:253–310 [View Article][PubMed]
    [Google Scholar]
  34. Eshwar AK, Tall BD, Gangiredla J, Gopinath GR, Patel IR et al. Linking Genomo- and Pathotype: Exploiting the Zebrafish Embryo Model to Investigate the Divergent Virulence Potential among Cronobacter spp. PLoS One 2016; 11:e0158428 [View Article][PubMed]
    [Google Scholar]
  35. Hall M, Chattaway MA, Reuter S, Savin C, Strauch E et al. Use of whole-genus genome sequence data to develop a multilocus sequence typing tool that accurately identifies Yersinia isolates to the species and subspecies levels. J Clin Microbiol 2015; 53:35–42 [View Article][PubMed]
    [Google Scholar]
  36. Wang X, Li Y, Jing H, Ren Y, Zhou Z et al. Complete genome sequence of a Yersinia enterocolitica "Old World" (3/O:9) strain and comparison with the "New World" (1B/O:8) strain. J Clin Microbiol 2011; 49:1251–1259 [View Article][PubMed]
    [Google Scholar]
  37. McNally A, Thomson NR, Reuter S, Wren BW. 'Add, stir and reduce': Yersinia spp. as model bacteria for pathogen evolution. Nat Rev Microbiol 2016; 14:177–190 [View Article][PubMed]
    [Google Scholar]
  38. Kirzinger MWB, Butz CJ, Stavrinides J. Inheritance of Pantoea type III secretion systems through both vertical and horizontal transfer. Mol Genet Genomics 2015; 290:2075–2088 [View Article][PubMed]
    [Google Scholar]
  39. Chan K-G, Tan K-H, Yin W-F, Tan J-Y. Complete Genome Sequence of Cedecea neteri Strain SSMD04, a Bacterium Isolated from Pickled Mackerel Sashimi. Genome Announc 2014; 2:e01339-14 [View Article][PubMed]
    [Google Scholar]
  40. Ginn PS, Tart SB, Sharkady SM, Thompson DK. Urinary Catheter Colonization by Multidrug-Resistant Cedecea neteri in Patient with Benign Prostatic Hyperplasia. Case Rep Infect Dis 2018; 2018:1–5 [View Article][PubMed]
    [Google Scholar]
  41. Walterson AM, Stavrinides J. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev 2015; 39:968–984 [View Article][PubMed]
    [Google Scholar]
  42. Correa VR, Majerczak DR, Ammar E-D, Merighi M, Pratt RC et al. The bacterium Pantoea stewartii uses two different type III secretion systems to colonize its plant host and insect vector. Appl Environ Microbiol 2012; 78:6327–6336 [View Article][PubMed]
    [Google Scholar]
  43. Thong KL, Tan LK, Ooi PT. Genetic diversity, virulotyping and antimicrobial resistance susceptibility of Yersinia enterocolitica isolated from pigs and porcine products in Malaysia. J Sci Food Agric 2018; 98:87–95 [View Article][PubMed]
    [Google Scholar]
  44. Bent ZW, Young GM. Contribution of BlaA and BlaB beta-lactamases to antibiotic susceptibility of Yersinia enterocolitica biovar 1B. Antimicrob Agents Chemother 2010; 54:4000–4002 [View Article][PubMed]
    [Google Scholar]
  45. Schriefer E-M, Hoffmann-Thoms S, Schmid FX, Schmid A, Heesemann J. Yersinia enterocolitica and Photorhabdus asymbiotica β-lactamases BlaA are exported by the twin-arginine translocation pathway. Int J Med Microbiol 2013; 303:16–24 [View Article][PubMed]
    [Google Scholar]
  46. Joutsen S, Laukkanen-Ninios R, Henttonen H, Niemimaa J, Voutilainen L et al. Yersinia spp. in Wild Rodents and Shrews in Finland. Vector Borne Zoonotic Dis 2017; 17:303–311 [View Article][PubMed]
    [Google Scholar]
  47. Bhagat N, Virdi JS. Distribution of virulence-associated genes in Yersinia enterocolitica biovar 1A correlates with clonal groups and not the source of isolation. FEMS Microbiol Lett 2007; 266:177–183 [View Article][PubMed]
    [Google Scholar]
  48. Batzilla J, Heesemann J, Rakin A. The pathogenic potential of Yersinia enterocolitica 1A. Int J Med Microbiol 2011; 301:556–561 [View Article][PubMed]
    [Google Scholar]
  49. Ramamurthy T, Yoshino Ki, Huang X, Balakrish Nair G, Carniel E et al. The novel heat-stable enterotoxin subtype gene (ystB) of Yersinia enterocolitica: nucleotide sequence and distribution of the yst genes. Microb Pathog 1997; 23:189–200 [View Article][PubMed]
    [Google Scholar]
  50. Bäumler AJ, Hantke K. Ferrioxamine uptake in Yersinia enterocolitica: characterization of the receptor protein FoxA. Mol Microbiol 1992; 6:1309–1321 [View Article][PubMed]
    [Google Scholar]
  51. Schubert S, Fischer D, Heesemann J. Ferric enterochelin transport in Yersinia enterocolitica: molecular and evolutionary aspects. J Bacteriol 1999; 181:6387–6395 [View Article][PubMed]
    [Google Scholar]
  52. Bearden SW, Perry RD. The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol 1999; 32:403–414 [View Article][PubMed]
    [Google Scholar]
  53. Fetherston JD, Mier I, Truszczynska H, Perry RD. The Yfe and Feo transporters are involved in microaerobic growth and virulence of Yersinia pestis in bubonic plague. Infect Immun 2012; 80:3880–3891 [View Article][PubMed]
    [Google Scholar]
  54. Perry RD, Bobrov AG, Fetherston JD. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis . Metallomics 2015; 7:965–978 [View Article][PubMed]
    [Google Scholar]
  55. Ellison DW, Young B, Nelson K, Miller VL. YmoA negatively regulates expression of invasin from Yersinia enterocolitica . J Bacteriol 2003; 185:7153–7159 [View Article][PubMed]
    [Google Scholar]
  56. Cornelis GR, Sluiters C, Delor I, Geib D, Kaniga K et al. ymoA, a Yersinia enterocolitica chromosomal gene modulating the expression of virulence functions. Mol Microbiol 1991; 5:1023–1034 [View Article][PubMed]
    [Google Scholar]
  57. Jackson MW, Silva-Herzog E, Plano GV. The ATP-dependent ClpXP and Lon proteases regulate expression of the Yersinia pestis type III secretion system via regulated proteolysis of YmoA, a small histone-like protein. Mol Microbiol 2004; 54:1364–1378 [View Article][PubMed]
    [Google Scholar]
  58. Young GM, Schmiel DH, Miller VL. A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci U S A 1999; 96:6456–6461 [View Article][PubMed]
    [Google Scholar]
  59. Schmiel DH, Wagar E, Karamanou L, Weeks D, Miller VL. Phospholipase A of Yersinia enterocolitica contributes to pathogenesis in a mouse model. Infect Immun 1998; 66:3941–3951 [View Article][PubMed]
    [Google Scholar]
  60. Strong PCR, Hinchliffe SJ, Patrick H, Atkinson S, Champion OL et al. Identification and characterisation of a novel adhesin Ifp in Yersinia pseudotuberculosis . BMC Microbiol 2011; 11:85 [View Article][PubMed]
    [Google Scholar]
  61. Haiko J, Suomalainen M, Ojala T, Lähteenmäki K, Korhonen TK. Invited review: Breaking barriers-attack on innate immune defences by omptin surface proteases of enterobacterial pathogens. Innate Immun 2009; 15:67–80 [View Article][PubMed]
    [Google Scholar]
  62. Springer K, Sänger P-A, Moritz C, Felsl A, Rattei T et al. Insecticidal Toxicity of Yersinia frederiksenii Involves the Novel Enterotoxin YacT. Front Cell Infect Microbiol 2018; 8:392 [View Article][PubMed]
    [Google Scholar]
  63. Araujo-Garrido JL, Bernal-Bayard J, Ramos-Morales F. Type III secretion effectors with arginine N-glycosyltransferase activity. Microorganisms 2020; 8:E357357 [View Article][PubMed]
    [Google Scholar]
  64. Yang X, Pan J, Wang Y, Shen X. Type VI Secretion Systems Present New Insights on Pathogenic Yersinia . Front Cell Infect Microbiol 2018; 8:260 [View Article][PubMed]
    [Google Scholar]
  65. Galata V, Fehlmann T, Backes C, Keller A. PLSDB: a resource of complete bacterial plasmids. Nucleic Acids Res 2019; 47:D195–D202 [View Article][PubMed]
    [Google Scholar]
  66. Johnson CM, Grossman AD. Integrative and conjugative elements (ICEs): what they do and how they work. Annu Rev Genet 2015; 49:577–601 [View Article][PubMed]
    [Google Scholar]
  67. Fineran PC, Iglesias Cans MC, Ramsay JP, Wilf NM, Cossyleon D et al. Draft Genome Sequence of Serratia sp. Strain ATCC 39006, a Model Bacterium for Analysis of the Biosynthesis and Regulation of Prodigiosin, a Carbapenem, and Gas Vesicles. Genome Announc 2013; 1:e01039-13 [View Article][PubMed]
    [Google Scholar]
  68. Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 2015; 43:D298–D299 [View Article][PubMed]
    [Google Scholar]
  69. Schwarz S, Hood RD, Mougous JD. What is type VI secretion doing in all those bugs?. Trends Microbiol 2010; 18:531–537 [View Article][PubMed]
    [Google Scholar]
  70. Andersson JA, Sha J, Erova TE, Fitts EC, Ponnusamy D et al. Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis . Front Cell Infect Microbiol 2017; 7:448 [View Article][PubMed]
    [Google Scholar]
  71. Iwobi A, Heesemann J, Garcia E, Igwe E, Noelting C et al. Novel virulence-associated type II secretion system unique to high-pathogenicity Yersinia enterocolitica . Infect Immun 2003; 71:1872–1879 [View Article][PubMed]
    [Google Scholar]
  72. Forman S, Paulley JT, Fetherston JD, Cheng Y-Q, Perry RD. Yersinia ironomics: comparison of iron transporters among Yersinia pestis biotypes and its nearest neighbor, Yersinia pseudotuberculosis. Biometals 2010; 23:275–294 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000411
Loading
/content/journal/mgen/10.1099/mgen.0.000411
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited Most Cited RSS feed