1887

Abstract

Nontypeable (NTHi) colonizes human upper respiratory airways and plays a key role in the course and pathogenesis of acute exacerbations of chronic obstructive pulmonary disease (COPD). Currently, it is not possible to distinguish COPD isolates of NTHi from other clinical isolates of NTHi using conventional genotyping methods. Here, we analysed the core and accessory genome of 568 NTHi isolates, including 40 newly sequenced isolates, to look for genetic distinctions between NTHi isolates from COPD with respect to other illnesses, including otitis media, meningitis and pneumonia. Phylogenies based on polymorphic sites in the core-genome did not show discrimination between NTHi strains collected from different clinical phenotypes. However, pan-genome-wide association studies identified 79 unique NTHi accessory genes that were significantly associated with COPD. Furthermore, many of the COPD-related NTHi genes have known or predicted roles in virulence, transmembrane transport of metal ions and nutrients, cellular respiration and maintenance of redox homeostasis. This indicates that specific genes may be required by NTHi for its survival or virulence in the COPD lung. These results advance our understanding of the pathogenesis of NTHi infection in COPD lungs.

Funding
This study was supported by the:
  • , La Trobe University
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000405
2020-07-24
2020-09-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/8/mgen000405.html?itemId=/content/journal/mgen/10.1099/mgen.0.000405&mimeType=html&fmt=ahah

References

  1. Agrawal A, Murphy TF. Haemophilus influenzae infections in the H. influenzae type B conjugate vaccine era. J Clin Microbiol 2011; 49:3728–3732 [CrossRef][PubMed]
    [Google Scholar]
  2. Moghaddam SJ, Ochoa CE, Sethi S, Dickey BF. Nontypeable Haemophilus influenzae in chronic obstructive pulmonary disease and lung cancer. Int J Chron Obstruct Pulmon Dis 2011; 6:113–123 [CrossRef][PubMed]
    [Google Scholar]
  3. Murphy TF, Brauer AL, Schiffmacher AT, Sethi S. Persistent colonization by Haemophilus influenzae in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2004; 170:266–272 [CrossRef][PubMed]
    [Google Scholar]
  4. Sriram KB, Cox AJ, Clancy RL, Slack MPE, Cripps AW. Nontypeable Haemophilus influenzae and chronic obstructive pulmonary disease: a review for clinicians. Crit Rev Microbiol 2018; 44:125–142 [CrossRef][PubMed]
    [Google Scholar]
  5. Wong SMS, Akerley BJ. Genome-scale approaches to identify genes essential for Haemophilus influenzae pathogenesis. Front Cell Infect Microbiol 2012; 2:23 [CrossRef][PubMed]
    [Google Scholar]
  6. Messer JS, Liechty ER, Vogel OA, Chang EB. Evolutionary and ecological forces that shape the bacterial communities of the human gut. Mucosal Immunol 2017; 10:567–579 [CrossRef][PubMed]
    [Google Scholar]
  7. Pettigrew MM, Ahearn CP, Gent JF, Kong Y, Gallo MC et al. Haemophilus influenzae genome evolution during persistence in the human airways in chronic obstructive pulmonary disease. Proc Natl Acad Sci USA 2018; 115:E3256–E3265 [CrossRef][PubMed]
    [Google Scholar]
  8. Harrison A, Hardison RL, Fullen AR, Wallace RM, Gordon DM et al. Continuous microevolution accelerates disease progression during sequential episodes of infection. Cell Rep 2020; 30:2978–2988 [CrossRef][PubMed]
    [Google Scholar]
  9. Elhenawy W, Tsai CN, Coombes BK. Host-specific adaptive diversification of Crohn's disease-associated adherent-invasive Escherichia coli . Cell Host Microbe 2019; 25:301–312 [CrossRef][PubMed]
    [Google Scholar]
  10. Clementi CF, Murphy TF. Non-typeable Haemophilus influenzae invasion and persistence in the human respiratory tract. Front Cell Infect Microbiol 2011; 1:1 [CrossRef][PubMed]
    [Google Scholar]
  11. LeClerc JE, Li B, Payne WL, Cebula TA. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 1996; 274:1208–1211 [CrossRef][PubMed]
    [Google Scholar]
  12. Torres-Cruz J, van der Woude MW. Slipped-strand mispairing can function as a phase variation mechanism in Escherichia coli . J Bacteriol 2003; 185:6990–6994 [CrossRef][PubMed]
    [Google Scholar]
  13. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000; 405:299–304 [CrossRef][PubMed]
    [Google Scholar]
  14. Didelot X, Méric G, Falush D, Darling AE. Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli . BMC Genomics 2012; 13:256 [CrossRef][PubMed]
    [Google Scholar]
  15. Wilson BA, Garud NR, Feder AF, Assaf ZJ, Pennings PS. The population genetics of drug resistance evolution in natural populations of viral, bacterial and eukaryotic pathogens. Mol Ecol 2016; 25:42–66 [CrossRef][PubMed]
    [Google Scholar]
  16. Leimbach A, Hacker J, Dobrindt U. E. coli as an all-rounder: the thin line between commensalism and pathogenicity. Curr Top Microbiol Immunol 2013; 358:3–32 [CrossRef][PubMed]
    [Google Scholar]
  17. Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli . Nature 2009; 461:1243–1247 [CrossRef][PubMed]
    [Google Scholar]
  18. Lieberman TD, Michel J-B, Aingaran M, Potter-Bynoe G, Roux D et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet 2011; 43:1275–1280 [CrossRef][PubMed]
    [Google Scholar]
  19. Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. Within-host evolution of bacterial pathogens. Nat Rev Microbiol 2016; 14:150–162 [CrossRef][PubMed]
    [Google Scholar]
  20. LaCross NC, Marrs CF, Gilsdorf JR. Population structure in nontypeable Haemophilus influenzae . Infect Genet Evol 2013; 14:125–136 [CrossRef][PubMed]
    [Google Scholar]
  21. De Chiara M, Hood D, Muzzi A, Pickard DJ, Perkins T et al. Genome sequencing of disease and carriage isolates of nontypeable Haemophilus influenzae identifies discrete population structure. Proc Natl Acad Sci USA 2014; 111:5439–5444 [CrossRef][PubMed]
    [Google Scholar]
  22. Erwin AL, Sandstedt SA, Bonthuis PJ, Geelhood JL, Nelson KL et al. Analysis of genetic relatedness of Haemophilus influenzae isolates by multilocus sequence typing. J Bacteriol 2008; 190:1473–1483 [CrossRef][PubMed]
    [Google Scholar]
  23. Gautam SS, Kc R, Leong KW, Mac Aogáin M, O'Toole RF. A step-by-step beginner's protocol for whole genome sequencing of human bacterial pathogens. J Biol Methods 2019; 6:e110 [CrossRef][PubMed]
    [Google Scholar]
  24. Harrison A, Dyer DW, Gillaspy A, Ray WC, Mungur R et al. Genomic sequence of an otitis media isolate of nontypeable Haemophilus influenzae: comparative study with H. influenzae serotype D, strain KW20. J Bacteriol 2005; 187:4627–4636 [CrossRef][PubMed]
    [Google Scholar]
  25. Moleres J, Fernández-Calvet A, Ehrlich RL, Martí S, Pérez-Regidor L et al. Antagonistic pleiotropy in the bifunctional surface protein FadL (OmpP1) during adaptation of Haemophilus influenzae to chronic lung infection associated with chronic obstructive pulmonary disease. mBio 2018; 9:e01176-18 [CrossRef][PubMed]
    [Google Scholar]
  26. Kappler U, Dhouib R, Nair RP, McEwan AG. Draft genome sequences of three nontypeable strains of Haemophilus influenzae, C188, R535, and 1200, isolated from different types of disease. Genome Announc 2017; 5:e00035-17 [CrossRef][PubMed]
    [Google Scholar]
  27. Aziz A, Sarovich DS, Nosworthy E, Beissbarth J, Chang AB et al. Molecular signatures of non-typeable Haemophilus influenzae lung adaptation in pediatric chronic lung disease. Front Microbiol 2019; 10:1622 [CrossRef][PubMed]
    [Google Scholar]
  28. Atack JM, Murphy TF, Bakaletz LO, Seib KL, Jennings MP. Closed complete genome sequences of two nontypeable Haemophilus influenzae strains containing novel modA alleles from the sputum of patients with chronic obstructive pulmonary disease. Microbiol Resour Announc 2018; 7:e00821-18 [CrossRef][PubMed]
    [Google Scholar]
  29. Kc R, Leong KWC, McEwan B, Lachowicz J, Harkness NM et al. Draft genome sequence of an isolate of nontypeable Haemophilus influenzae from an acute exacerbation of chronic obstructive pulmonary disease in Tasmania. Microbiol Resour Announc 2020; 9:e00375-20 [CrossRef][PubMed]
    [Google Scholar]
  30. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 2018; 46:W537–W544 [CrossRef][PubMed]
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  32. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [CrossRef][PubMed]
    [Google Scholar]
  33. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  34. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [CrossRef][PubMed]
    [Google Scholar]
  35. Katoh K, Misawa K, Kuma K-ichi, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [CrossRef][PubMed]
    [Google Scholar]
  36. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [CrossRef][PubMed]
    [Google Scholar]
  37. Seeman T. MLST Github 2014 https://github.com/tseemann/mlst
  38. Francisco AP, Bugalho M, Ramirez M, Carriço JA. Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics 2009; 10:152 [CrossRef][PubMed]
    [Google Scholar]
  39. Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M et al. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics 2012; 13:87 [CrossRef][PubMed]
    [Google Scholar]
  40. Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 2008; 24:1403–1405 [CrossRef][PubMed]
    [Google Scholar]
  41. Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 2010; 11:94 [CrossRef][PubMed]
    [Google Scholar]
  42. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  43. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004; 101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
  44. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  45. Sitnikova T. Bootstrap method of interior-branch test for phylogenetic trees. Mol Biol Evol 1996; 13:605–611 [CrossRef][PubMed]
    [Google Scholar]
  46. Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol 2016; 17:238 [CrossRef][PubMed]
    [Google Scholar]
  47. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 1995; 57:289–300
    [Google Scholar]
  48. Maddison WP. Testing character correlation using pairwise comparisons on a phylogeny. J Theor Biol 2000; 202:195–204 [CrossRef][PubMed]
    [Google Scholar]
  49. North BV, Curtis D, Sham PC. A note on calculation of empirical P values from Monte Carlo procedure. Am J Hum Genet 2003; 72:498–499 [CrossRef][PubMed]
    [Google Scholar]
  50. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 2019; 47:D419–D426 [CrossRef][PubMed]
    [Google Scholar]
  51. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. Gene ontology: tool for the unification of biology. Nat Genet 2000; 25:25–29 [CrossRef][PubMed]
    [Google Scholar]
  52. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 2004; 186:1518–1530 [CrossRef][PubMed]
    [Google Scholar]
  53. Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ et al. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol 2010; 11:R107 [CrossRef][PubMed]
    [Google Scholar]
  54. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 2009; 5:e1000344 [CrossRef][PubMed]
    [Google Scholar]
  55. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 2001; 29:22–28 [CrossRef][PubMed]
    [Google Scholar]
  56. Fernaays MM, Lesse AJ, Sethi S, Cai X, Murphy TF. Differential genome contents of nontypeable Haemophilus influenzae strains from adults with chronic obstructive pulmonary disease. Infect Immun 2006; 74:3366–3374 [CrossRef][PubMed]
    [Google Scholar]
  57. Murphy TF, Lesse AJ, Kirkham C, Zhong H, Sethi S et al. A clonal group of nontypeable Haemophilus influenzae with two IgA proteases is adapted to infection in chronic obstructive pulmonary disease. PLoS One 2011; 6:e25923 [CrossRef][PubMed]
    [Google Scholar]
  58. Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 1994; 58:563–602[PubMed]
    [Google Scholar]
  59. Sisco KL, Smith HO. Sequence-specific DNA uptake in Haemophilus transformation. Proc Natl Acad Sci USA 1979; 76:972–976 [CrossRef][PubMed]
    [Google Scholar]
  60. Redfield RJ. sxy-1, a Haemophilus influenzae mutation causing greatly enhanced spontaneous competence. J Bacteriol 1991; 173:5612–5618 [CrossRef][PubMed]
    [Google Scholar]
  61. Karudapuram S, Barcak GJ. The Haemophilus influenzae dprABC genes constitute a competence-inducible operon that requires the product of the tfoX (sxy) gene for transcriptional activation. J Bacteriol 1997; 179:4815–4820 [CrossRef][PubMed]
    [Google Scholar]
  62. Redfield RJ, Cameron ADS, Qian Q, Hinds J, Ali TR et al. A novel CRP-dependent regulon controls expression of competence genes in Haemophilus influenzae . J Mol Biol 2005; 347:735–747 [CrossRef][PubMed]
    [Google Scholar]
  63. Chen I, Dubnau D. DNA uptake during bacterial transformation. Nat Rev Microbiol 2004; 2:241–249 [CrossRef][PubMed]
    [Google Scholar]
  64. Carruthers MD, Tracy EN, Dickson AC, Ganser KB, Munson RS et al. Biological roles of nontypeable Haemophilus influenzae type IV pilus proteins encoded by the pil and com operons. J Bacteriol 2012; 194:1927–1933 [CrossRef][PubMed]
    [Google Scholar]
  65. Sharma M, Majumdar PK. Occupational lifestyle diseases: an emerging issue. Indian J Occup Environ Med 2009; 13:109–112 [CrossRef][PubMed]
    [Google Scholar]
  66. Burdett V, Baitinger C, Viswanathan M, Lovett ST, Modrich P. In vivo requirement for RecJ, ExoVII, ExoI, and ExoX in methyl-directed mismatch repair. Proc Natl Acad Sci USA 2001; 98:6765–6770 [CrossRef][PubMed]
    [Google Scholar]
  67. Thanavala Y, Lugade AA. Role of nontypeable Haemophilus influenzae in otitis media and chronic obstructive pulmonary disease. Adv Otorhinolaryngol 2011; 72:170–175 [CrossRef][PubMed]
    [Google Scholar]
  68. van Wessel K, Rodenburg GD, Veenhoven RH, Spanjaard L, van der Ende A et al. Nontypeable Haemophilus influenzae invasive disease in the Netherlands: a retrospective surveillance study 2001–2008. Clin Infect Dis 2011; 53:e1–7 [CrossRef][PubMed]
    [Google Scholar]
  69. Bodor FF, Marchant CD, Shurin PA, Barenkamp SJ. Bacterial etiology of conjunctivitis-otitis media syndrome. Pediatrics 1985; 76:26–28[PubMed]
    [Google Scholar]
  70. Hausdorff WP, Feikin DR, Klugman KP. Epidemiological differences among pneumococcal serotypes. Lancet Infect Dis 2005; 5:83–93 [CrossRef][PubMed]
    [Google Scholar]
  71. Leong KWC, Cooley LA, Anderson TL, Gautam SS, McEwan B et al. Emergence of vancomycin-resistant Enterococcus faecium at an Australian hospital: a whole genome sequencing analysis. Sci Rep 2018; 8:6274
    [Google Scholar]
  72. Leong KWC, Kalukottege R, Cooley LA, Anderson TL, Wells A et al. State-wide genomic and epidemiological analyses of vancomycin-resistant Enterococcus faecium in Tasmania's public hospitals. Front Microbiol 2019; 10:2940 [CrossRef][PubMed]
    [Google Scholar]
  73. Meats E, Feil EJ, Stringer S, Cody AJ, Goldstein R et al. Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol 2003; 41:1623–1636 [CrossRef][PubMed]
    [Google Scholar]
  74. Brenner DJ, Mayer LW, Carlone GM, Harrison LH, Bibb WF et al. Biochemical, genetic, and epidemiologic characterization of Haemophilus influenzae biogroup aegyptius (Haemophilus aegyptius) strains associated with Brazilian purpuric fever. J Clin Microbiol 1988; 26:1524–1534[PubMed]
    [Google Scholar]
  75. Lewis BB, Carter RA, Ling L, Leiner I, Taur Y et al. Pathogenicity locus, core genome, and accessory gene contributions to Clostridium difficile virulence. mBio 2017; 8:e00885-17 [CrossRef][PubMed]
    [Google Scholar]
  76. Power PM, Bentley SD, Parkhill J, Moxon ER, Hood DW. Investigations into genome diversity of Haemophilus influenzae using whole genome sequencing of clinical isolates and laboratory transformants. BMC Microbiol 2012; 12:273 [CrossRef][PubMed]
    [Google Scholar]
  77. Foxwell AR, Kyd JM, Cripps AW. Nontypeable Haemophilus influenzae: pathogenesis and prevention. Microbiol Mol Biol Rev 1998; 62:294–308[PubMed]
    [Google Scholar]
  78. Jurcisek JA, Bookwalter JE, Baker BD, Fernandez S, Novotny LA et al. The PilA protein of non-typeable Haemophilus influenzae plays a role in biofilm formation, adherence to epithelial cells and colonization of the mammalian upper respiratory tract. Mol Microbiol 2007; 65:1288–1299 [CrossRef][PubMed]
    [Google Scholar]
  79. Swords WE, Moore ML, Godzicki L, Bukofzer G, Mitten MJ et al. Sialylation of lipooligosaccharides promotes biofilm formation by nontypeable Haemophilus influenzae . Infect Immun 2004; 72:106–113 [CrossRef][PubMed]
    [Google Scholar]
  80. Lomholt H, van Alphen L, Kilian M. Antigenic variation of immunoglobulin A1 proteases among sequential isolates of Haemophilus influenzae from healthy children and patients with chronic obstructive pulmonary disease. Infect Immun 1993; 61:4575–4581[PubMed]
    [Google Scholar]
  81. Schoen C, Kischkies L, Elias J, Ampattu BJ. Metabolism and virulence in Neisseria meningitidis . Front Cell Infect Microbiol 2014; 4:114 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000405
Loading
/content/journal/mgen/10.1099/mgen.0.000405
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error