1887

Abstract

is a colonizing opportunistic pathogen and a leading cause of bloodstream infection with high morbidity and mortality. carriage frequency is reportedly between 20 and 40 % among healthy adults, with colonization considered to be a risk factor for bacteraemia. It is unknown whether a genetic component of the bacterium is associated with bacteraemia in comparison to nasal carriage strains. Previous association studies primarily focusing on the clinical outcome of an infection have produced conflicting results, often limited by study design challenged by sample collections and the clonal diversity of . To date, no study has investigated whether genomic features separate nasal carriage isolates from bacteraemia isolates within a single clonal lineage. Here we have investigated whether genomic features, including single-nucleotide polymorphisms (SNPs), genes, or kmers, distinguish nasal carriage isolates from bacteraemia isolates that all belong to the same clonal lineage [clonal complex 45 (CC45)] using whole-genome sequencing (WGS) and a genome-wide association (GWA) approach. From CC45, 100 isolates (50 bacteraemia and 50 nasal carriage, geographically and temporally matched) from Denmark were whole-genome sequenced and subjected to GWA analyses involving gene copy number variation, SNPs, gene content, kmers and gene combinations, while correcting for lineage effects. No statistically significant association involving SNPs, specific genes, gene variants, gene copy number variation, or a combination of genes was identified that could distinguish bacteraemia isolates from nasal carriage isolates. The presented results suggest that all nasal CC45 isolates carry the potential to cause invasive disease, as no core or accessory genome content or variations were statistically associated with invasiveness.

Funding
This study was supported by the:
  • Chandler Roe , This work received no specific grant from any funding agency.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000403
2020-07-15
2020-09-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/8/mgen000403.html?itemId=/content/journal/mgen/10.1099/mgen.0.000403&mimeType=html&fmt=ahah

References

  1. Laupland KB. Incidence of bloodstream infection: a review of population-based studies. Clin Microbiol Infect 2013; 19:492–500 [CrossRef][PubMed]
    [Google Scholar]
  2. van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL et al. Predictors of mortality in Staphylococcus aureus bacteremia. Clin Microbiol Rev 2012; 25:362–386 [CrossRef][PubMed]
    [Google Scholar]
  3. Copin R, Shopsin B, Torres VJ. After the deluge: mining Staphylococcus aureus genomic data for clinical associations and host-pathogen interactions. Curr Opin Microbiol 2018; 41:43–50 [CrossRef][PubMed]
    [Google Scholar]
  4. von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med 2001; 344:11–16 [CrossRef][PubMed]
    [Google Scholar]
  5. Erikstrup LT, Dinh KM, Andersen PS, Skov R, Nielsen KR et al. Staphylococcus aureus carriage among healthy adults and the importance of culture method: results from the Danish blood donor study (DBDS). J Clin Epidemiol 2019
    [Google Scholar]
  6. Benoit JB, Frank DN, Bessesen MT. Genomic evolution of Staphylococcus aureus isolates colonizing the nares and progressing to bacteremia. PLoS One 2018; 13:e0195860 [CrossRef][PubMed]
    [Google Scholar]
  7. Sangvik M, Olsen RS, Olsen K, Simonsen GS, Furberg A-S et al. Age- and gender-associated Staphylococcus aureus spa types found among nasal carriers in a general population: the Tromso Staph and skin study. J Clin Microbiol 2011; 49:4213–4218 [CrossRef][PubMed]
    [Google Scholar]
  8. Blomfeldt A, Aamot HV, Eskesen AN, Müller F, Monecke S. Molecular characterization of methicillin-sensitive Staphylococcus aureus isolates from bacteremic patients in a Norwegian university hospital. J Clin Microbiol 2013; 51:345–347 [CrossRef][PubMed]
    [Google Scholar]
  9. Rasmussen G, Monecke S, Brus O, Ehricht R, Söderquist B. Long term molecular epidemiology of methicillin-susceptible Staphylococcus aureus bacteremia isolates in Sweden. PLoS One 2014; 9:e114276 [CrossRef][PubMed]
    [Google Scholar]
  10. Young BC, Golubchik T, Batty EM, Fung R, Larner-Svensson H et al. Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. Proc Natl Acad Sci U S A 2012; 109:4550–4555 [CrossRef][PubMed]
    [Google Scholar]
  11. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28:603–661 [CrossRef][PubMed]
    [Google Scholar]
  12. Azarian T, Daum RS, Petty LA, Steinbeck JL, Yin Z et al. Intrahost evolution of methicillin-resistant Staphylococcus aureus USA300 among individuals with reoccurring skin and soft-tissue infections. J Infect Dis 2016; 214:895–905 [CrossRef][PubMed]
    [Google Scholar]
  13. Ye Z, Vasco DA, Carter TC, Brilliant MH, Schrodi SJ et al. Genome wide association study of SNP-, gene-, and pathway-based approaches to identify genes influencing susceptibility to Staphylococcus aureus infections. Front Genet 2014; 5:125 [CrossRef][PubMed]
    [Google Scholar]
  14. Young BC, Earle SG, Soeng S, Sar P, Kumar V et al. Panton–Valentine leucocidin is the key determinant of Staphylococcus aureus pyomyositis in a bacterial GWAS. eLife 2019; 8: [CrossRef]
    [Google Scholar]
  15. Lilje B, Rasmussen RV, Dahl A, Stegger M, Skov RL et al. Whole-Genome sequencing of bloodstream Staphylococcus aureus isolates does not distinguish bacteraemia from endocarditis. Microb Genom 2017; 3: [CrossRef][PubMed]
    [Google Scholar]
  16. Tristan A, Rasigade J-P, Ruizendaal E, Laurent F, Bes M et al. Rise of CC398 lineage of Staphylococcus aureus among infective endocarditis isolates revealed by two consecutive population-based studies in France. PLoS One 2012; 7:e51172 [CrossRef][PubMed]
    [Google Scholar]
  17. Feil EJ, Cooper JE, Grundmann H, Robinson DA, Enright MC et al. How clonal is Staphylococcus aureus?. J Bacteriol 2003; 185:3307–3316 [CrossRef][PubMed]
    [Google Scholar]
  18. Rieg S, Jonas D, Kaasch AJ, Porzelius C, Peyerl-Hoffmann G et al. Microarray-Based genotyping and clinical outcomes of Staphylococcus aureus bloodstream infection: an exploratory study. PLoS One 2013; 8:e71259 [CrossRef][PubMed]
    [Google Scholar]
  19. Fowler VG, Nelson CL, McIntyre LM, Kreiswirth BN, Monk A et al. Potential associations between hematogenous complications and bacterial genotype in Staphylococcus aureus infection. J Infect Dis 2007; 196:738–747 [CrossRef][PubMed]
    [Google Scholar]
  20. Nienaber JJC, Sharma Kuinkel BK, Clarke-Pearson M, Lamlertthon S, Park L et al. Methicillin-Susceptible Staphylococcus aureus endocarditis isolates are associated with clonal complex 30 genotype and a distinct repertoire of enterotoxins and adhesins. J Infect Dis 2011; 204:704–713 [CrossRef][PubMed]
    [Google Scholar]
  21. Rasmussen G, Monecke S, Ehricht R, Söderquist B. Prevalence of clonal complexes and virulence genes among commensal and invasive Staphylococcus aureus isolates in Sweden. PLoS One 2013; 8:e77477 [CrossRef][PubMed]
    [Google Scholar]
  22. Roe CC, Horn KS, Driebe EM, Bowers J, Terriquez JA et al. Whole genome SNP typing to investigate methicillin-resistant Staphylococcus aureus carriage in a health-care provider as the source of multiple surgical site infections. Hereditas 2016; 153:11 [CrossRef][PubMed]
    [Google Scholar]
  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  24. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [CrossRef]
    [Google Scholar]
  25. Inouye M, Dashnow H, Raven L-A, Schultz MB, Pope BJ et al. SRST2: rapid genomic surveillance for public health and hospital microbiology Labs. Genome Med 2014; 6:90 [CrossRef][PubMed]
    [Google Scholar]
  26. Sahl JW, Lemmer D, Travis J, Schupp JM, Gillece JD et al. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb Genom 2016; 2:e000074 [CrossRef][PubMed]
    [Google Scholar]
  27. Stegger M, Driebe EM, Roe C, Lemmer D, Bowers JR et al. Genome sequence of Staphylococcus aureus strain CA-347, a USA600 methicillin-resistant isolate. Genome Announc 2013; 1:e00517–13 [CrossRef][PubMed]
    [Google Scholar]
  28. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [CrossRef][PubMed]
    [Google Scholar]
  29. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [CrossRef][PubMed]
    [Google Scholar]
  30. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  31. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [CrossRef][PubMed]
    [Google Scholar]
  32. Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 2010; 11:94 [CrossRef][PubMed]
    [Google Scholar]
  33. Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 2008; 24:1403–1405 [CrossRef][PubMed]
    [Google Scholar]
  34. Reumerman RA, Tucker NP, Herron PR, Hoskisson PA, Sangal V. Tool for rapid annotation of microbial SNPs (TRAMS): a simple program for rapid annotation of genomic variation in prokaryotes. Antonie van Leeuwenhoek 2013; 104:431–434 [CrossRef][PubMed]
    [Google Scholar]
  35. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  36. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [CrossRef][PubMed]
    [Google Scholar]
  37. Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R et al. Database indexing for production MegaBLAST searches. Bioinformatics 2008; 24:1757–1764 [CrossRef][PubMed]
    [Google Scholar]
  38. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  39. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS et al. Real-Time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli . J Clin Microbiol 2014; 52:1501–1510 [CrossRef][PubMed]
    [Google Scholar]
  40. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis . Nat Commun 2015; 6:10063 [CrossRef][PubMed]
    [Google Scholar]
  41. Collins C, Didelot X. A phylogenetic method to perform genome-wide association studies in microbes that accounts for population structure and recombination. PLoS Comput Biol 2018; 14:e1005958 [CrossRef]
    [Google Scholar]
  42. Lees JA, Galardini M, Bentley SD, Weiser JN, Corander J. pyseer: a comprehensive tool for microbial pangenome-wide association studies. Bioinformatics 2018; 34:4310–4312 [CrossRef][PubMed]
    [Google Scholar]
  43. R Core Team R: A Language and Environment for Statistical Computing Vienna, Austria: R Foundation for Statistical Computing; 2017
    [Google Scholar]
  44. Brynildsrud O, Snipen L-G, Bohlin J. CNOGpro: detection and quantification of CNVs in prokaryotic whole-genome sequencing data. Bioinformatics 2015; 31:1708–1715 [CrossRef][PubMed]
    [Google Scholar]
  45. Ginestet C. ggplot2: elegant graphics for data analysis. J R Stat Soc Ser A Stat Soc 2011; 174:245–246 [CrossRef]
    [Google Scholar]
  46. Hugonnet S, Sax H, Eggimann P, Chevrolet J-C, Pittet D. Nosocomial bloodstream infection and clinical sepsis. Emerg Infect Dis 2004; 10:76–81 [CrossRef][PubMed]
    [Google Scholar]
  47. Goto M, Al-Hasan MN. Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin Microbiol Infect 2013; 19:501–509 [CrossRef][PubMed]
    [Google Scholar]
  48. Pittet D, Wenzel RP. Nosocomial bloodstream infections. Secular trends in rates, mortality, and contribution to total hospital deaths. Arch Intern Med 1995; 155:1177–1184 [CrossRef][PubMed]
    [Google Scholar]
  49. Wertheim HFL, Vos MC, Ott A, van Belkum A, Voss A et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 2004; 364:703–705 [CrossRef][PubMed]
    [Google Scholar]
  50. Goerke C, Wolz C. Regulatory and genomic plasticity of Staphylococcus aureus during persistent colonization and infection. Int J Med Microbiol 2004; 294:195–202 [CrossRef][PubMed]
    [Google Scholar]
  51. Edwards AM, Massey RC. How does Staphylococcus aureus escape the bloodstream?. Trends Microbiol 2011; 19:184–190 [CrossRef][PubMed]
    [Google Scholar]
  52. Nelson CL, Pelak K, Podgoreanu MV, Ahn SH, Scott WK et al. A genome-wide association study of variants associated with acquisition of Staphylococcus aureus bacteremia in a healthcare setting. BMC Infect Dis 2014; 14:83 [CrossRef]
    [Google Scholar]
  53. Cimochowski GE, Harostock MD, Brown R, Bernardi M, Alonzo N et al. Intranasal mupirocin reduces sternal wound infection after open heart surgery in diabetics and nondiabetics. Ann Thorac Surg 2001; 71:1572–1579 [CrossRef][PubMed]
    [Google Scholar]
  54. Gernaat-van der Sluis AJ, Hoogenboom-Verdegaal AM, Edixhoven PJ, Spies-van Rooijen NH. Prophylactic mupirocin could reduce orthopedic wound infections. 1,044 patients treated with mupirocin compared with 1,260 historical controls. Acta Orthop Scand 1998; 69:412–414 [CrossRef][PubMed]
    [Google Scholar]
  55. Wilcox MH, Hall J, Pike H, Templeton PA, Fawley WN et al. Use of perioperative mupirocin to prevent methicillin-resistant Staphylococcus aureus (MRSA) orthopaedic surgical site infections. J Hosp Infect 2003; 54:196–201 [CrossRef][PubMed]
    [Google Scholar]
  56. Young BC, Wu C-H, Gordon NC, Cole K, Price JR et al. Severe infections emerge from commensal bacteria by adaptive evolution. elife 2017; 6:e30637 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000403
Loading
/content/journal/mgen/10.1099/mgen.0.000403
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error