1887

Abstract

is composed of a wide variety of serovars, causing human self-limited gastrointestinal illnesses or invasive infections. Invasive non-typhoidal (iNTS) is well documented, with high mortality for children and immunocompromised adults in sub-Saharan Africa and has recently been reported in Southeast Asia. However, iNTS in China remains unknown. In May 2019, a case of invasive infection caused by serovar Uzaramo (. Uzaramo) was reported for the first time in China. Phylogenomic analysis was performed by genomic sequencing the available contextualized isolates, which separated the two Chinese strains into different sublineages. Both phenotypic and genomic characterization demonstrated that the . Uzaramo isolates showed in general low antimicrobial resistance potential, except one isolated from lake-water in China. Additional comparative genomic analysis and killing assays suggested a unique combination of virulence factors, including typhoid toxin and fimbrial adhesin, which might play a role in the invasive infection. This study highlights that the transparency of global surveillance genomic data could accelerate understanding of virulence and antimicrobial resistance makeup of a previously unknown threat.

Funding
This study was supported by the:
  • National Program on Key Research Project of China (Award 2019YFE0103900)
  • National Program on Key Research Project of China (Award 2017YFC1600103; 2018YFD0500501)
    • Principle Award Recipient: Min Yue
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000401
2020-06-26
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/7/mgen000401.html?itemId=/content/journal/mgen/10.1099/mgen.0.000401&mimeType=html&fmt=ahah

References

  1. Falush D, Torpdahl M, Didelot X, Conrad DF, Wilson DJ et al. Mismatch induced speciation in Salmonella: model and data. Philos Trans R Soc Lond B Biol Sci 2006; 361:2045–2053 [View Article][PubMed]
    [Google Scholar]
  2. Issenhuth-Jeanjean S, Roggentin P, Mikoleit M, Guibourdenche M, de Pinna E et al. Supplement 2008-2010 (NO. 48) to the White-Kauffmann-Le minor scheme. Res Microbiol 2014; 165:526–530 [View Article][PubMed]
    [Google Scholar]
  3. Pan H, Li X, Fang W, Yue M. Analysis of major human and foodborne pathogens and their resistance to antimicrobials in the USA in the past two decades: Implications for surveillance and control of antimicrobial resistance in China. Journal of Zhejiang University 2019; 44:237–246
    [Google Scholar]
  4. Crump JA, Sjölund-Karlsson M, Gordon MA, Epidemiology PCM, Presentation C et al. Antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 2015; 28:901–937
    [Google Scholar]
  5. Stanaway J, Parisi A, Sarkar K, Blacker B, Reiner R et al. The global burden of non-typhoidal Salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis 2019; 19:1312–1324
    [Google Scholar]
  6. Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. Invasive non-typhoidal Salmonella disease: an emerging and neglected tropical disease in Africa; 2012
  7. Feasey NA, Hadfield J, Keddy KH, Dallman TJ, Jacobs J et al. Distinct Salmonella enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings. Nat Genet 2016; 48:1211–1217 [View Article][PubMed]
    [Google Scholar]
  8. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE et al. Epidemic multiple drug resistant Salmonella typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res 2009; 19:2279–2287 [View Article][PubMed]
    [Google Scholar]
  9. Paudyal N, Yue M. Antimicrobial resistance in the "Dark Matter". Clin Infect Dis 2019; 69:379–380 [View Article][PubMed]
    [Google Scholar]
  10. Gilchrist JJ, MacLennan CA. Invasive nontyphoidal Salmonella disease in Africa. EcoSal Plus 2019; 8: [View Article][PubMed]
    [Google Scholar]
  11. Phu Huong Lan N, Le Thi Phuong T, Nguyen Huu H, Thuy L, Mather AE et al. Invasive Non-typhoidal Salmonella infections in Asia: clinical observations, disease outcome and dominant serovars from an infectious disease hospital in Vietnam. PLoS Negl Trop Dis 2016; 10:e0004857 [View Article][PubMed]
    [Google Scholar]
  12. Le Thi Phuong T, Rattanavong S, Vongsouvath M, Davong V, Phu Huong Lan N et al. Non-typhoidal Salmonella serovars associated with invasive and non-invasive disease in the Lao people's Democratic Republic. Trans R Soc Trop Med Hyg 2017; 111:418–424 [View Article][PubMed]
    [Google Scholar]
  13. Jackson BR, Griffin PM, Cole D, Walsh KA, Chai SJ. Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998-2008. Emerg Infect Dis 2013; 19:1239–1244 [View Article][PubMed]
    [Google Scholar]
  14. Pan H, Zhou X, Chai W, Paudyal N, Li S et al. Diversified sources for human infections by Salmonella enterica serovar Newport. Transbound Emerg Dis 2019; 66:1044–1048 [View Article][PubMed]
    [Google Scholar]
  15. Parsons SK, Bull CM, Gordon DM. Spatial variation and survival of Salmonella enterica subspecies in a population of Australian sleepy lizards (Tiliqua rugosa). Appl Environ Microbiol 2015; 81:5804–5811 [View Article][PubMed]
    [Google Scholar]
  16. Pulford CV, Wenner N, Redway ML, Rodwell EV, Webster HJ et al. The diversity, evolution and ecology of Salmonella in venomous snakes. PLoS Negl Trop Dis 2019; 13:e0007169 [View Article][PubMed]
    [Google Scholar]
  17. den Bakker HC, Moreno Switt AI, Govoni G, Cummings CA, Ranieri ML et al. Genome sequencing reveals diversification of virulence factor content and possible host adaptation in distinct subpopulations of Salmonella enterica. BMC Genomics 2011; 12:425 [View Article][PubMed]
    [Google Scholar]
  18. Paton JH, Mirfattahi MB. Salmonella meningitis acquired from PET snakes. Arch Dis Child 1997; 77:93 [View Article][PubMed]
    [Google Scholar]
  19. Zhu C, Yue M, Rankin S, Weill F-X, Frey J et al. One-Step identification of five prominent chicken Salmonella serovars and biotypes. J Clin Microbiol 2015; 53:3881–3883 [View Article][PubMed]
    [Google Scholar]
  20. Yu H, Elbediwi M, Zhou X, Shuai H, Lou X et al. Epidemiological and genomic characterization of Campylobacter jejuni isolates from a foodborne outbreak at Hangzhou, China. Int J Mol Sci 2020; 21:3001 [View Article][PubMed]
    [Google Scholar]
  21. Paudyal N, Pan H, Wu B, Zhou X, Zhou X et al. Persistent asymptomatic human infections by Salmonella enterica serovar Newport in China. mSphere 2020; 5:e00163–00120 [View Article][PubMed]
    [Google Scholar]
  22. Paudyal N, Pan H, Elbediwi M, Zhou X, Peng X et al. Characterization of Salmonella dublin isolated from bovine and human hosts. BMC Microbiol 2019; 19:226 [View Article][PubMed]
    [Google Scholar]
  23. Wang X, Biswas S, Paudyal N, Pan H, Li X et al. Antibiotic Resistance in Salmonella Typhimurium Isolates Recovered From the Food Chain Through National Antimicrobial Resistance Monitoring System Between 1996 and 2016. Front Microbiol 2019; 10:985 [View Article][PubMed]
    [Google Scholar]
  24. EUCAST Breakpoint tables for interpretation of MICs and zone diameters. version 9.0.
  25. NARMS Antibiotics Tested by NARMS. https://www.cdc.gov/narms/antibiotics-tested.html [accessed Oct 1, 2019].; 2019
  26. Elbediwi M, Pan H, Biswas S, Li Y, Yue M. Emerging colistin resistance in Salmonella enterica serovar Newport isolates from human infections. Emerg Microbes Infect 2020; 9:535–538 [View Article][PubMed]
    [Google Scholar]
  27. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  28. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article][PubMed]
    [Google Scholar]
  29. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article][PubMed]
    [Google Scholar]
  30. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:D687–D692 [View Article][PubMed]
    [Google Scholar]
  31. Yoshida CE, Kruczkiewicz P, Laing CR, Lingohr EJ, Gannon VPJ et al. The Salmonella in silico typing resource (SISTR): an open Web-Accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS One 2016; 11:e0147101 [View Article][PubMed]
    [Google Scholar]
  32. Zhang S, den Bakker HC, Li S, Chen J, Dinsmore BA et al. SeqSero2: Rapid and Improved Salmonella Serotype Determination Using Whole-Genome Sequencing Data. Appl Environ Microbiol 2019; 85: 01 12 2019 [View Article][PubMed]
    [Google Scholar]
  33. Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article][PubMed]
    [Google Scholar]
  34. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article][PubMed]
    [Google Scholar]
  35. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article][PubMed]
    [Google Scholar]
  36. Dera-Tomaszewska B. Salmonella serovars isolated for the first time in Poland, 1995-2007. Int J Occup Med Environ Health 2012; 25:294–303 [View Article][PubMed]
    [Google Scholar]
  37. McLauchlin J, Aird H, Charlett A, Chattaway M, Elviss N et al. Imported edible leaves collected at retail sale in England during 2017 with an emphasis on betel and curry leaves: microbiological quality with respect to Salmonella, Shiga-toxin-producing E. coli (STEC) and levels of Escherichia coli. J Appl Microbiol 2018; 125:1175–1185 [View Article][PubMed]
    [Google Scholar]
  38. Rodriguez-Rivera LD, Bowen BM, den Bakker HC, Duhamel GE, Wiedmann M. Characterization of the cytolethal distending toxin (typhoid toxin) in non-typhoidal Salmonella serovars. Gut Pathog 2015; 7:19 [View Article][PubMed]
    [Google Scholar]
  39. Delgado-Suárez EJ, Selem-Mojica N, Ortiz-López R, Gebreyes WA, Allard MW et al. Whole genome sequencing reveals widespread distribution of typhoidal toxin genes and VirB/D4 plasmids in bovine-associated nontyphoidal Salmonella. Sci Rep 2018; 8:9864 [View Article][PubMed]
    [Google Scholar]
  40. Miller RA, Wiedmann M. The cytolethal distending toxin produced by nontyphoidal Salmonella serotypes javiana, montevideo, oranienburg, and mississippi induces DNA damage in a manner similar to that of serotype typhi. mBio 2016; 7: [View Article]
    [Google Scholar]
  41. Cheng RA, Wiedmann M. The ADP-Ribosylating Toxins of Salmonella . Toxins 2019; 11:416 [View Article][PubMed]
    [Google Scholar]
  42. Pulford CV, Perez-Sepulveda BM, Rodwell EV, Weill F-X, Baker KS et al. Salmonella enterica Serovar Panama, an Understudied Serovar Responsible for Extraintestinal Salmonellosis Worldwide. Infect Immun 2019; 87: [View Article][PubMed]
    [Google Scholar]
  43. Galán JE. Typhoid toxin provides a window into typhoid fever and the biology of Salmonella typhi. Proc Natl Acad Sci U S A 2016; 113:6338–6344 [View Article][PubMed]
    [Google Scholar]
  44. Azriel S, Goren A, Shomer I, Aviv G, Rahav G et al. The Typhi colonization factor (Tcf) is encoded by multiple non-typhoidal Salmonella serovars but exhibits a varying expression profile and Interchanging contribution to intestinal colonization. Virulence 2017; 8:1791–1807 [View Article][PubMed]
    [Google Scholar]
  45. Yue M, Rankin SC, Blanchet RT, Nulton JD, Edwards RA et al. Diversification of the Salmonella fimbriae: a model of macro- and microevolution. PLoS One 2012; 7:e38596 [View Article][PubMed]
    [Google Scholar]
  46. Yue M, Han X, De Masi L, Zhu C, Ma X et al. Allelic variation contributes to bacterial host specificity. Nat Commun 2015; 6:8754 [View Article][PubMed]
    [Google Scholar]
  47. Yue M. Bacterial persistent infection at the interface between host and microbiota. Clin Infect Dis 2016; 62:1325–1326 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000401
Loading
/content/journal/mgen/10.1099/mgen.0.000401
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error