1887

Abstract

Here, we report the draft genome sequence of SH388. Improved phylogenetic and taxonomic analysis of this organism using genome-level analyses supports assignment of this organism to a novel family within the phylum . Additionally, comparative genomic and phylogenetic analyses contextualize the convergent evolution of sulfur disproportionation and potential extracellular electron transfer in this organism relative to other members of the .

Funding
This study was supported by the:
  • National Aeronautics and Space Administration (Award NNX15AP58G)
    • Principle Award Recipient: David T. Johnston
  • National Science Foundation (Award EAR-1149555)
    • Principle Award Recipient: Emma Bertran
  • Simons Foundation
    • Principle Award Recipient: Lewis M Ward
  • Agouron Institute
    • Principle Award Recipient: Lewis M Ward
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000390
2020-06-17
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/7/mgen000390.html?itemId=/content/journal/mgen/10.1099/mgen.0.000390&mimeType=html&fmt=ahah

References

  1. Canfield DE, Thamdrup B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 1994; 266:1973–1975 [View Article][PubMed]
    [Google Scholar]
  2. Canfield DE, Teske A. Late proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 1996; 382:127–132 [View Article][PubMed]
    [Google Scholar]
  3. Johnston DT, Farquhar J, Wing BA, Kaufman AJ, Canfield DE. Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators. Am J Sci 2005; 305:645–660 [View Article]
    [Google Scholar]
  4. Finster K. Microbiological disproportionation of inorganic sulfur compounds. J Sulfur Chem 2008; 29:281–292 [View Article]
    [Google Scholar]
  5. Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J 2018; 12:1715–1728 [View Article][PubMed]
    [Google Scholar]
  6. Slobodkina GB, Kolganova TV, Kopitsyn DS, Viryasov MB, Bonch-Osmolovskaya EA et al. Dissulfurirhabdus thermomarina gen. nov., sp. nov., a thermophilic, autotrophic, sulfite-reducing and disproportionating deltaproteobacterium isolated from a shallow-sea hydrothermal vent. Int J Syst Evol Microbiol 2016; 66:2515–2519 [View Article][PubMed]
    [Google Scholar]
  7. Bertran E, Ward LM, Johnston DT. Draft genome sequence of Acidianus ambivalens DSM 3772, an aerobic thermoacidophilic sulfur disproportionator. Microbiol Resour Announc 2020; 9:e01415-19 [View Article][PubMed]
    [Google Scholar]
  8. Bertran E, Ward LM, Johnston DT. Draft genome sequence of Desulfofundulus thermobenzoicus subsp. thermosyntrophicus DSM 14055, a moderately thermophilic sulfate reducer. Microbiol Resour Announc 2020; 9:e01416-19 [View Article][PubMed]
    [Google Scholar]
  9. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  10. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  11. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  12. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  13. Ward LM, Shih PM, Fischer WW. MetaPOAP: presence or absence of metabolic pathways in metagenome-assembled genomes. Bioinformatics 2018; 34:4284–4286 [View Article][PubMed]
    [Google Scholar]
  14. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article][PubMed]
    [Google Scholar]
  15. Søndergaard D, Pedersen CNS, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep 2016; 6:34212 [View Article][PubMed]
    [Google Scholar]
  16. Ward LM, Idei A, Nakagawa M, Ueno Y, Fischer WW et al. Geochemical and metagenomic characterization of Jinata Onsen, a Proterozoic-analog hot spring, reveals novel microbial diversity including iron-tolerant phototrophs and thermophilic lithotrophs. Microbes Environ 2019; 34:278–292 [View Article][PubMed]
    [Google Scholar]
  17. Ward LM, Cardona T, Holland-Moritz H. Evolutionary implications of anoxygenic phototrophy in the bacterial phylum Candidatus Eremiobacterota (WPS-2). Front Microbiol 2019; 10:1658 [View Article][PubMed]
    [Google Scholar]
  18. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article][PubMed]
    [Google Scholar]
  19. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  20. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009; 25:1189–1191 [View Article][PubMed]
    [Google Scholar]
  21. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  22. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, LA. 2010 pp 1–8
    [Google Scholar]
  23. Lemoine F, Domelevo Entfellner J-B, Wilkinson E, Correia D, Dávila Felipe M et al. Renewing Felsenstein's phylogenetic bootstrap in the era of big data. Nature 2018; 556:452–456 [View Article][PubMed]
    [Google Scholar]
  24. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article][PubMed]
    [Google Scholar]
  25. Doolittle RF. Of URFs and ORFs: a Primer on How to Analyze Derived Amino Acid Sequences Mill Valley, CA: University Science Books; 1986
    [Google Scholar]
  26. Ward LM, Hemp J, Shih PM, McGlynn SE, Fischer WW. Evolution of phototrophy in the chloroflexi phylum driven by horizontal gene transfer. Front Microbiol 2018; 9:260 [View Article][PubMed]
    [Google Scholar]
  27. Ward LM, Johnston DT, Shih PM. Phanerozoic radiation of ammonia oxidizing bacteria. bioRxiv 2020655399
    [Google Scholar]
  28. Bertran E. Cellular and intracellular insights into microbial sulfate reduction and sulfur disproportionation. Doctoral Thesis Harvard University; 2019
    [Google Scholar]
  29. Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 2011; 77:1925–1936 [View Article][PubMed]
    [Google Scholar]
  30. Palomo A, Pedersen AG, Fowler SJ, Dechesne A, Sicheritz-Pontén T et al. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J 2018; 12:1779–1793 [View Article][PubMed]
    [Google Scholar]
  31. Ward LM, Hemp J, Pace LA, Fischer WW. Draft genome sequence of Leptolinea tardivitalis YMTK-2, a mesophilic anaerobe from the Chloroflexi class Anaerolineae. Genome Announc 2015; 3:e01356–15 [View Article][PubMed]
    [Google Scholar]
  32. Forte E, Borisov VB, Vicente JB, Giuffrè A. Cytochrome bd and gaseous ligands in bacterial physiology. Advances in microbial physiology 71 Academic Press; 2017 pp 171–234
    [Google Scholar]
  33. McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 2015; 526:531–535 [View Article][PubMed]
    [Google Scholar]
  34. Shi L, Dong H, Reguera G, Beyenal H, Lu A et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 2016; 14:651–662 [View Article][PubMed]
    [Google Scholar]
  35. Gordon EH, Pike AD, Hill AE, Cuthbertson PM, Chapman SK et al. Identification and characterization of a novel cytochrome c(3) from Shewanella frigidimarina that is involved in Fe(III) respiration. Biochem J 2000; 349:153–158 [View Article][PubMed]
    [Google Scholar]
  36. Bewley KD, Firer-Sherwood MA, Mock J-Y, Ando N, Drennan CL et al. Mind the gap: diversity and reactivity relationships among multihaem cytochromes of the MtrA/DmsE family. Biochem Soc Trans 2012; 40:1268–1273 [View Article][PubMed]
    [Google Scholar]
  37. Müller H, Marozava S, Probst AJ, Meckenstock RU. Groundwater cable bacteria conserve energy by sulfur disproportionation. ISME J 2020; 14:623–634 [View Article][PubMed]
    [Google Scholar]
  38. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ et al. A new view of the tree of life. Nat Microbiol 2016; 1:16048 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000390
Loading
/content/journal/mgen/10.1099/mgen.0.000390
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error